Reduction in Λ

FOC-VIII : **CS 30053**

Reduction in Arithmetic Expression

We know the following arithmetic expressions are equivalent.

$$0+5, 2 \times 2+1, 5, 1+1+3 \times 1, 1 \times 2+1+2 \times 1, \cdots$$

But there is somthing special about 5.

- Every other expression can be reduced to it,
- but 5 cannot be reduced to anything else.
- 5 is the reduced (normal) element of the class.

Reduction is a Binary Relation

- Let \mathcal{E} be the collection of arithmetic expressions over \mathbb{N} and $\{+, \times, (,)\}$.
- The **reduction** ' \rightarrow ' may be viewed as a **binary** relation on \mathcal{E} i.e. $\rightarrow \subset \mathcal{E} \times \mathcal{E}$.
- Following is an example of reduction, \rightarrow :

$$(\mathbf{1} \times \mathbf{2} + \mathbf{1} + \mathbf{2} \times \mathbf{1} , \mathbf{2} + \mathbf{1} + \mathbf{2}) \in \rightarrow$$

We in practice write: $1 \times 2 + 1 + 2 \times 1 \rightarrow 2 + 1 + 2$ i.e. $1 \times 2 + 1 + 2 \times 1$ is **reduced** to 2 + 1 + 2 in one step.

Reflexive and Transitive Binary Relations

• A binary relation R over a set A is called **reflexive** if,

$$(\mathbf{a}, \mathbf{a}) \in \mathbf{A}$$
, for all $a \in A$.

• A binary relation R over a set A is called transitive if,

$$(\mathbf{a}, \mathbf{b}), (\mathbf{b}, \mathbf{c}) \in \mathbf{A} \implies (\mathbf{a}, \mathbf{c}) \in \mathbf{A}, \text{ for all } a, b, c \in A.$$

Reflexive-Transitive Closure of a Binary Relation

- Let R be a binary relation over the set A.
- The reflexive-transitive closure of R is also a binary relation R^* over A such that,
 - $-\mathbf{R}\subseteq\mathbf{R}^*$,

FOC-VIII : **CS 30053**

- R* is both reflexive and transitive.
- $-\mathbf{R}^*$ is the smallest relation satisfying the first two conditions.

Reflexive-Transitive Closure of a Binary Relation

Given a binary relation R over A, the basic idea of its reflexive-transitive closure R^* are the following,

- For all $\mathbf{a} \in \mathbf{A}$, $(\mathbf{a}, \mathbf{a}) \in \mathbf{R}^*$ R^* is reflexive, and
- $(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^*$, if there are $\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_n} \in \mathbf{A}$, such that $\mathbf{a} = \mathbf{a_1}$ and $\mathbf{b} = \mathbf{a_n}$, $(\mathbf{a_i}, \mathbf{a_{i+1}}) \in \mathbf{R}$, for all $\mathbf{a_i}$, $1 \le i \le n$.

a is R^* -related to **b**, if either $\mathbf{a} = \mathbf{b}$ or through some finite number of stages they are R-related.

FOC-VIII : **CS 30053**

Reflexive-Transitive Closure of Reduction

We can talk about **reduction** in finite number of steps if we take the **reflexive-transitive closure** of the **reduction** relation \rightarrow over \mathcal{E} .

$$1 \times 2 + 1 + 2 \times 1 \quad \rightarrow \quad 2 + 1 + 2 \times 1$$

$$\rightarrow \quad 2 + 1 + 2$$

$$\rightarrow \quad 3 + 2$$

$$\rightarrow \quad 5$$

We write $1 \times 2 + 1 + 2 \times 1 \rightarrow^* 5$.

β -Reduction in Λ

The β -reduction of λ -terms is defined as follows.

$$\beta = \{((\lambda \mathbf{x}.\mathbf{u})\mathbf{v}, \mathbf{u}[\mathbf{x} = \mathbf{v}]) : \mathbf{u}, \mathbf{v} \in \mathbf{\Lambda}\}$$

We write one-step β -reduction as

$$(\lambda \mathbf{x}.\mathbf{u})\mathbf{v} \rightarrow_{\beta} \mathbf{u}[\mathbf{x} = \mathbf{v}]$$

- $(\lambda \mathbf{x}.\mathbf{u})\mathbf{v}$ is called a β -redex as we can perform β -reduction on it.
- $\mathbf{u}[\mathbf{x} = \mathbf{v}]$ is called the β -contractum of the previous β -radex.

Example of β -Reduction

$$(\lambda \mathbf{x}y.\mathbf{x}(y\mathbf{x}))(\lambda \mathbf{a}.\mathbf{a}\mathbf{a})(\lambda ab.a)$$

$$\rightarrow_{\beta} \quad (\lambda \mathbf{y}.(\lambda a.aa)(\mathbf{y}(\lambda a.aa)))(\lambda \mathbf{a}\mathbf{b}.\mathbf{a})$$

$$\rightarrow_{\beta} \quad (\lambda a.aa)((\lambda \mathbf{a}b.\mathbf{a})(\lambda \mathbf{a}.\mathbf{a}\mathbf{a})))$$

$$\rightarrow_{\beta} \quad (\lambda \mathbf{a}.\mathbf{a}\mathbf{a})(\lambda \mathbf{b}.(\lambda \mathbf{a}.\mathbf{a}\mathbf{a}))$$

$$\rightarrow_{\beta} \quad (\lambda \mathbf{b}.(\lambda a.aa))(\lambda \mathbf{b}.(\lambda \mathbf{a}.\mathbf{a}\mathbf{a}))$$

$$\rightarrow_{\beta} \quad \lambda a.aa$$

FOC-VIII : **CS 30053**

R-T Closure of β -Reduction

The reflexive-transitive closure of \rightarrow_{β} is \rightarrow_{β}^* and we write

$$(\lambda xy.x(yx))(\lambda a.aa)(\lambda ab.a) \rightarrow_{\beta}^{*} \lambda a.aa$$

G. Biswas: Computer Sc & Engg: IIT Kharagpur

β -Reduction in Λ

FOC-VIII : **CS 30053**

- A λ -term is in β -normal form if it does not contain any β -redex.
- Some λ -term cannot be reduced to a normal form.

$$(\lambda x.xx)(\lambda y.yy) \rightarrow_{\beta} (\lambda y.yy)(\lambda y.yy)$$
$$\rightarrow_{\beta} (\lambda y.yy)(\lambda y.yy)$$
$$\rightarrow_{\beta} \cdots$$

Church-Rosser Property

If two λ -terms are equal, then they can be **reduced** (\rightarrow_{β}^*) to a common term (upto renaming variables - α -equivalence).

$$\mathbf{u} = \mathbf{v} \ \Rightarrow \ \exists \mathbf{w}, \ \mathbf{u} \rightarrow_{\beta}^{*} \mathbf{w} \text{ and } \mathbf{v} \rightarrow_{\beta}^{*} \mathbf{w}$$

A term can have at most one β -normal form i.e. if the computation terminates it always gives the same value.

Another Computation: Pevious Example

$$(\lambda \mathbf{x}y.\mathbf{x}(y\mathbf{x}))(\lambda \mathbf{a}.\mathbf{a}\mathbf{a})(\lambda ab.a)$$

$$\rightarrow_{\beta} \quad (\lambda y.(\lambda \mathbf{a}.\mathbf{a}\mathbf{a})(\mathbf{y}(\lambda \mathbf{a}.\mathbf{a}\mathbf{a})))(\lambda ab.a)$$

$$\rightarrow_{\beta} \quad (\lambda \mathbf{y}.(\mathbf{y}(\lambda a.aa))(\mathbf{y}(\lambda a.aa)))(\lambda \mathbf{a}\mathbf{b}.\mathbf{a})$$

$$\rightarrow_{\beta} \quad ((\lambda ab.a)(\lambda a.aa))((\lambda \mathbf{a}b.\mathbf{a})(\lambda \mathbf{a}.\mathbf{a}\mathbf{a}))$$

$$\rightarrow_{\beta} \quad ((\lambda \mathbf{a}b.\mathbf{a})(\lambda \mathbf{a}.\mathbf{a}\mathbf{a}))(\lambda ba.aa)$$

$$\rightarrow_{\beta} \quad (\lambda \mathbf{b}a.aa)(\lambda \mathbf{b}\mathbf{a}.\mathbf{a}\mathbf{a})$$

$$\rightarrow_{\beta} \quad \lambda a.aa$$

Both computation terminate with identical result.

G. Biswas: Computer Sc & Engg: IIT Kharagpur

Terminating & Nonterminating Computations

FOC-VIII : **CS 30053**

Termination

 $(\lambda \mathbf{a}b.b)((\lambda \mathbf{a}.\mathbf{a}\mathbf{a})(\lambda \mathbf{a}.\mathbf{a}\mathbf{a})) \rightarrow_{\beta} \lambda b.b.$

nonTermination

$$(\lambda ab.b)((\lambda \mathbf{a.aa})(\lambda \mathbf{a.aa})) \rightarrow_{\beta} (\lambda ab.b)((\lambda a.aa)(\lambda a.aa))$$

 $\rightarrow_{\beta} \cdots$