Two Faces of Computation

- Function Computation: given an argument x compute the value of f(x), where f is a function.
- Language Membership: given a string x and a language L, decide whether $x \in L$.

Function Computation: Examples

- Computation of factorial function.
- Sorting a sequence of integers.
- Reversing a string of characters.

Factorial Function

- We compute the factorial function from the set of natural numbers to itself $(\mathbb{N} \longrightarrow \mathbb{N})$.
- Graph of '!' as a language:
 - $graph(!) = \{(0,1), (1,1), (2,2), (3,6), (4,24), \cdots\}.$
 - Let the alphabet be $\Sigma = \{0, 1, 2, \dots, 9, *\}$.
 - Encoding of graph(!) and its language:

$$L_! = \{0 * 1, 1 * 1, 2 * 2, 3 * 6, 4 * 24, 5 * 120, \cdots\} \subseteq \Sigma^*.$$

 $-6 * 720 \in L_{!}$, but $4 * 29 \notin L_{!}$.

Sorting of Integers

• Sorting of a finite sequence of integers may be viewed as a function from \mathbb{N}^* to itself.

$$sort(40, 20, 30, 10, 5, 25) = (5, 10, 20, 25, 30, 40).$$

• This also has a counterpart in language.

Decision Problem and Language Membership

- Test for primality whether a positive integer n is prime.
- Test for syntatic correctness: whether a C program is well-formed.
- Test for reachability whether there is a path from a node s to another node d in a undirected graph G.
- Existence of solution whether an equation over integers has an integral solution.

Every Decision Problem Can be Encoded as

Language Membership Problem

Characterisic Function

Let the domain of our interest be D.

• Let $B \subseteq D$, the characteristic function of B with respect to D is a function μ_B from $D \longrightarrow \{0,1\}$, so that

$$\mu_B(d) = \begin{cases} 1 & \text{if } d \in D, \\ 0 & \text{otherwise.} \end{cases}$$

8

Testing Prime

• Input : an element of \mathbb{N} .

FOC-VI : **CS 30053**

- Output : true or false.
- The set **prime** = $\{2, 3, 5, 7, 11, 13, 17, \cdots\}$ and the set **nonPrime** = $\{0, 1, 4, 6, 8, 9, 10, 12, 14, \cdots\}$.
- The testing algorithm actually computes the characteristic function of prime.
- Test for **primality** may be viewed as a decision problem of the language **prime**.

Syntactic Correctness of C Program

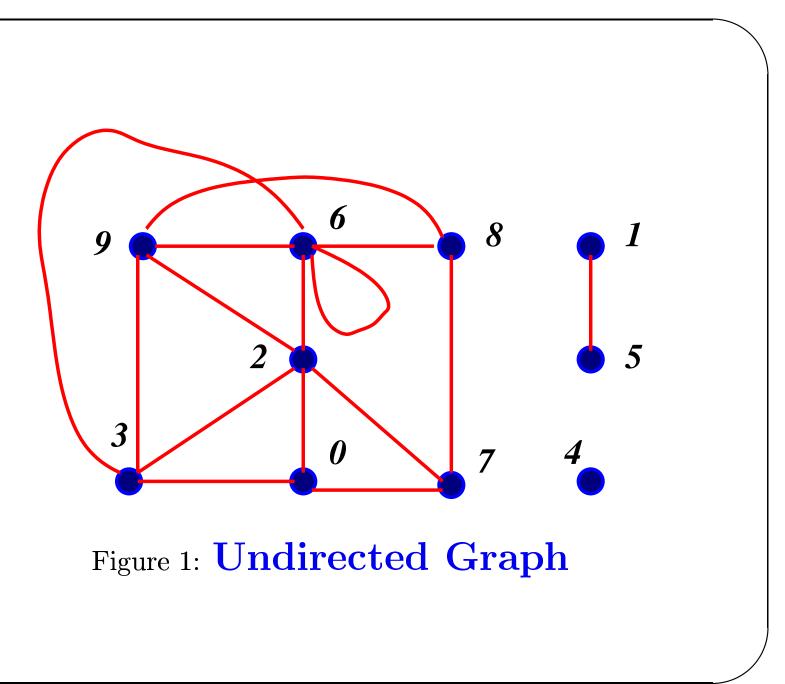
- Let the alphabet of C language be Σ_C .
- Each C program is a syntactically correct string over Σ_C .
- Syntax checking by a C compiler is testing whether a given string belongs to C language.

Graph

- An undirected graph G = (V, E) is a pair of data. The finite set V of vertices and the set $E = \{\{u, v\} : u, v \in V\}$ of edges. An undirected edge $\{u, v\} \in E$ may be written as u - v.
- A directed graph G = (V, E) is also a pair of data. The finite set V of vertices and the set $E = \{(u, v) : u, v \in V\}$ of edges. An directed edge $(u, v) \in E$ is also written as $u \to$.

A Graph as a String

- A graph may be represented as a string over the alphabet $\Sigma = \{0, \dots, 9, ; , (,), -\}.$
- Here efficiency is not our consideration!



Graph Representation: An Example

- $V = \{0, 1, \dots, 9\}.$
- $E = \{0 2, 0 3, 0 7, 1 5, 2 3, 2 6, 2 7, 2 9, 3 6, 3 9, 6 6, 6 8, 6 9, 7 8, 8 9\}.$
- The representation is

$$(0; 1; 2; 3; 4; 5; 6; 7; 8; 9); (0-2; 0-3; 0-7; 1-5; 2-3; 2-6; 2-7; 2-9; 3-6; 3-9; 6-6; 6-8; 6-9; 7-8; 8-9)$$

• The following one is not a valid representation.

$$(0;1;2);(1-2-3;)$$

Vertex Reachable Problem

- Given an undirected graph G and a pair of vertices s and d, whether the vertex d is reachable from the vertex s.
- We define a language L over the alphabet $\Sigma = \{0, \dots, 9, ; , (,), -\} \text{ so that a string of the form}$ $(s; d); (v_0; \dots; v_{k-1}); (e_0; \dots; e_{n-1}) \in L$

where $V = \{v_0, \dots, v_{k-1}\}, E = \{e_0, \dots, e_{n-1}\},$ $s, d \in V$ and there is a **path** from the vertex s to the vertex d. Vertex Reachable Problem (cont.)

• Any **vertex reachable** problem may be viewed as a decision problem of the language *L*.

Integer Solution of an Equation

• Consider a univariate polynomial equation

$$a_n x^n + \dots + a_1 x + a_0 = 0,$$

where the coefficients a_i s are integers. The question is whether the equation has an **integral root**.

• This decision problem can be encoded as a decision problem of a language.

Study of Language Classes

- In our discussion we tried to show that decision problems of any representable domain can be easily translated to a decision problem of some formal language.
- The study of language theoretic decision problems is an abstraction of the study of decision problems in different domains.