Beyond Countability

FOC-V : **CS 30053**

G. Biswas: Computer Sc & Engg: IIT Kharagpur

 $A \leq \mathcal{P}A$

FOC-V: CS 30053

There is always an one-to-one map from A to its power $set \mathcal{P}A$.

- $A = \emptyset$: It is *vacuously* true as A does not have any element and $\mathcal{P}\emptyset = \{\emptyset\}$.
- $A \neq \emptyset : f : A \longrightarrow \mathcal{P}A$, so that $f(a) = \{a\}$ for all $a \in A$, is one-to-one.

Cantor's Theorem

There cannot be any onto map (surjection) from any set A to its power set $\mathcal{P}A$.

Naturally, there cannot be any bijection. No set A is equinumerous to its power set $\mathcal{P}A$. Power set is always 'larger'.

Proof of Cantor's Theorem

The proof is by reductio ad absurdum using diagonalization.

Let $f: A \longrightarrow \mathcal{P}A$ be an *onto map* i.e. for each $B \in \mathcal{P}A$ $(B \subseteq A)$, there is an $a \in A$, so that f(a) = B.

Consider the following subset of A,

$$D = \{ a \in A : a \not\in f(a) \subseteq A \}.$$

Nothing Fishy!

$$D = \{ a \in A : a \not\in f(a) \subseteq A \}.$$

This set is perfectly normal. It is not even empty if f is onto. Consider $\emptyset \in \mathcal{P}A$, there must be some $a_0 \in A$ so that $f(a_0) = \emptyset$. But then $a_0 \notin f(a_0) = \emptyset$ and therefore $a_0 \in D$.

Proof (cont.)

As f is onto there is some $a_1 \in A$ such that $f(a_1) = D$ because

$$D = \{a \in A : a \not\in f(a) \subseteq A\} \in \mathcal{P}A.$$

By the law of excluded middle either $a_1 \in D$ or $a_1 \notin D$.

- $a_1 \in D = f(a_1)$ implies that $a_1 \not\in D$.
- $a_1 \notin D = f(a_1)$ implies that $a_1 \in D$.
- $Contradiction: a_1 \in D \text{ iff } a \notin D.$

Hence f cannot be an *onto map*.

What and Where is Diagonalization?

The diagonalization can be understood in a better way if we take $A = \mathbb{N}$, the set of natural numbers.

- There is an one-to-one map f from \mathbb{N} to $\mathcal{P}\mathbb{N}$ so that $f(n) = \{n\}.$
- We assume that there is also an one-to-one map g from $\mathcal{P}\mathbb{N}$ to \mathbb{N} . [The left inverse of g is a map from \mathbb{N} onto $\mathcal{P}\mathbb{N}$. Therefore it is equivalent to assume the existence of an onto map.]

Diagonalization (cont.)

- By the $Sch\"{o}rder$ -Bernstein theorem, there is a $bijection\ h$ from $\mathbb N$ to $\mathcal P\mathbb N$.
- We can index the elements of $\mathcal{P}\mathbb{N}$ (subsets of \mathbb{N}) by the elements of \mathbb{N} i.e.

$$\mathcal{P}\mathbb{N} = \{A_0, A_1, A_2, \cdots, A_{1000000}, \cdots\}$$

$\mathcal{P}\mathbb{N}$ as a Table

We may view $\mathcal{P}\mathbb{N}$ as an infinite table. For each subset of \mathbb{N} there is a row and for each element of \mathbb{N} there is a column. We put a '*' in the $ith\ row$ and $jth\ column$ if $j \in A_i$.

In our example the 0th row corresponds to the null set.

G. Biswas : Computer Sc & Engg : IIT Kharagpur

10

 $\mathcal{P}\mathbb{N}$ as a Table

FOC-V : **CS 30053**

S/E	0	1	2	3	4	5	6	7	8	9	• • •
A_0											• • •
A_1	*	*		*					*		• • •
A_2		*			*			*		*	• • •
A_3			*		*		*			*	• • •
A_4	*		*					*		*	• • •
A_5		*				*	*				• • •
A_6			*		*	*					• • •
• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •

Diagonalization (cont.)

We construct $D \subseteq \mathbb{N}$ from the table in the following way.

$$i \in D$$
 iff $i \notin A_i$.

The set $D = \{0, 2, 3, 4, 6, \cdots\}$.

- The set D is constructed from the diagonal of the table.
- D cannot be same as any A_i , $i \in \mathbb{N}$.
- $D \in \mathcal{P}\mathbb{N}$ which does not have any *coimage* in \mathbb{N} under the bijection h a contradiction.

Conclusion

- $\mathbb{N} \leq \mathcal{P}\mathbb{N}$ but $\mathcal{P}\mathbb{N} \leq \mathbb{N}$ i.e. $\mathcal{P}\mathbb{N}$ is an infinite set but is not denumerable.
- $\mathcal{P}\mathbb{N}$ is called an *uncountable set*.
- $\mathbb{N} < \mathcal{P}\mathbb{N} < \mathcal{P}\mathcal{P}\mathbb{N} < \cdots < \mathcal{P}^n\mathbb{N} < \mathcal{P}^{n+1}\mathbb{N} < \cdots$

 \mathbb{N} and $\mathbb{N}^{\mathbb{N}}$

The collection of all functions from the set of natural numbers (\mathbb{N}) to itself $(\mathbb{N}^{\mathbb{N}})$ cannot be equinumerous to \mathbb{N} .

Proof

The proof is again by reductio ad absurdum using diagonalization.

Let $F: \mathbb{N} \longrightarrow \mathbb{N}^{\mathbb{N}}$ be be a *bijection* so that $F(n) = f_n : \mathbb{N} \longrightarrow \mathbb{N}$. We define a new function $f: \mathbb{N} \longrightarrow \mathbb{N}$ in the following way.

$$f(n) = \begin{cases} 5 & \text{if } f_n(n) \neq 5, \\ 6 & \text{if } f_n(n) = 5, \end{cases} \text{ for all } n \in \mathbb{N}.$$

But then $f \neq F(n) = f_n$, for any $n \in \mathbb{N}$, because $f(n) \neq f_n(n)$ for each $n \in \mathbb{N}$. Hence F cannot be a bijection and $\mathbb{N}^{\mathbb{N}}$ is an uncountabe set.

Finally!

- The collection of all C* programs is a denumerable set (\mathcal{F}_{C^*}) .
- The collection of all functions from the set of natural numbers to itself $(\mathbb{N}^{\mathbb{N}})$ is an uncountable set.
- There cannot be a bijection from \mathcal{F}_{C^*} to $nat^{\mathbb{N}}$.
- Each function from \mathbb{N} to itself cannot be computed by a \mathbb{C}^* program.

Uncountable versus Denumerable

Description or Specification

- The graph of a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ or the language $L \subseteq \Sigma^*$, are objects of infinite size.
- These objects cannot be stored in a 'finite' (but potentially infinite) computer.
- It is necessary to find a finite description or specification to use them.

Description or Specification (con.)

- Any description or specification will use:
 - a finite^a set of meta-alphabet, Γ^b , and
 - a specification will be a string of finite length over Γ .
- Both $\mathbb{N}^{\mathbb{N}}$ and $\mathbf{2}^{\Sigma^*}$ are uncountable sets.

^aThis set may be denumerable but finitely specifiable.

^bThe alphabet of the specification or the meta language. It is not Σ , the alphabet of the object language, L.

Description or Specification (cont.)

- There can be at most denumerably many descriptions or specification.
- Therefore every function or every language cannot be specified or described. We may call them transcendental function or language!
- There will always be languages and functions which cannot be *decsribed* and this is irrespective of the exact method of description.