FOC-IV : **CS 30053**

Countable, Denumerable and Finite Sets

Countable Set

A set A is said to be **countable**, if there is an *injection* or *one-to-one* map from A to the set of natural numbers, \mathbb{N} ($\{0,1,2,\cdots\}$).

Examples

- The *null set* is countable as the only function is vacuously an injection.
- Any set with finite number of elements (n elements) is countable. The ith element will be mapped to i, 0 < i < n.
- Any subset B of \mathbb{N} is countable. The *inclusion map* $i: B \longrightarrow \mathbb{N}, i(k) = k$ is an injection.
- Are the sets of *real numbers* or *complex numbers* countable?

FOC-IV : **CS 30053**

Infinite Set

A set A is said to be an **infinite** set, if there is an *injection* or *one-to-one* map from the set of natural numbers \mathbb{N} , to the set A.

4

Examples

- The set of natural numbers is an infinite set. The identity map is an injection.
- The set of even numbers is an infinite set. We already have an injection $f: \mathbb{N} \longrightarrow \mathbb{E}$, f(n) = 2n.
- The collection of all *prime numbers* is an infinite set. It is more tricky to show that there is an *injection*.
- The set of real numbers, \mathbb{R} is an infinite set. The inclusion map $i: \mathbb{N} \longrightarrow \mathbb{R}$, i(n) = n is an injection.
- How do you show that the set of rational or complex numbers are infinite sets?

Denumerable and Finite Sets

- A set A is said to be denumerable, if it is both countable and infinite i.e. there is an injection from A to \mathbb{N} and also there is an injection from \mathbb{N} to A.
- A set A is said to be *finite*, if it is not *infinite* i.e. there is no *injection* from \mathbb{N} to A.

Examples: Denumerable Sets

- The set of natural numbers is denumerable. The identity map is an injection.
- The set of even numbers is denumerable. We already have an injection $f: \mathbb{N} \longrightarrow \mathbb{E}$, f(n) = 2n. The inverse of f is an injection in the other direction.
- The collection of all *prime numbers* is also denumerable.
- Are the set of rational, real or complex numbers denumerable?

Observe

- $A \text{ is } countable : A \leq \mathbb{N}.$
- $A \text{ is } infinite : \mathbb{N} \leq A.$

FOC-IV : **CS 30053**

- A is denumerable: $A \leq \mathbb{N}$ and $\mathbb{N} \leq A$. [We are not equipped to say that $A \simeq \mathbb{N}$.]
- $A \text{ is } finite : \mathbb{N} \not\leq A.$

Schröder - Bernstein Theorem

For two sets A and B, $A \leq B$ and $B \leq A$ implies $A \simeq B$

- If the cardinality of A is \leq the cardinality of B and also the cardinality of B is \leq the cardinality of A, then A and B are equinumerous (of same cardinality).
- In other words, if there are injections $f: A \longrightarrow B$ and $g: B \longrightarrow A$, there is a bijection from A to B.

To show that two sets are of same *cardinality*, it is often easy to construct a pair of *injections* than to construct a *bijection*.

A Beautiful Proof (Dedekind?)

A notation: Let $h: B \longrightarrow A$ be a map and $C \subseteq A$. We define

$$h^{-1}(C) = \{ b \in B : h(b) \in C \}$$

• Given two one-to-one maps $f:A\longrightarrow B$ and $g:B\longrightarrow A$, there exists $C\subseteq A$ such that $g^{-1}(A\setminus C)=B\setminus f(C)$.

• We define the function $F : \mathcal{P}A \longrightarrow \mathcal{P}A$ on the power set of A using f and g.

$$F(C) = A \setminus g(B \setminus f(C))$$
, for all $C \in \mathcal{P}A$.

- It can be proved that F is monoton i.e. $X \subseteq Y \subseteq A$ implies that $F(X) \subseteq F(Y)$, and
- It can also be proved that F is *continuous* i.e. if $\{A_i\}_{i\in I}$ be a collection of subsets the of A, then

$$F(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} F(A_i).$$

These two conditions and the structure of $\mathcal{P}A$ will guarantee the existence of a fixed point of F.

Fixed Point of a Function

A fixed point of a function $f: A \longrightarrow A$ is an element $a \in A$, such that f(a) = a.

- $s: \mathbb{N} \longrightarrow \mathbb{N}$, so that s(n) = n + 1, does not have any fixed point.
- $f: \mathbb{Z} \longrightarrow \mathbb{Z}$, so that f(k) = 4 k, has exactly one fixed point at k = 2.
- $1_{\mathbb{N}} : \mathbb{N} \longrightarrow \mathbb{N}$, so that $1_{\mathbb{N}}(n) = n$, has infinitely many fixed points.

Consider the collection of subsets of A, $\{A_i\}_{i\in\mathbb{N}}$, defined inductively as follows.

$$A_i = \begin{cases} \emptyset & \text{if } i = 0, \\ F(A_{i-1}) & \text{otherwise.} \end{cases}$$

Let $C = \bigcup_{i \in \mathbb{N}} \{A_i\}$. It is not difficult to prove that F(C) = C, a fixed point of F and this is the desired C.

$$F(C) = A \setminus g(B \setminus f(C)) = C \implies A \setminus C = g(B \setminus f(C))$$
$$\Rightarrow g^{-1}(A \setminus C) = B \setminus f(C).$$

Example

Consider $f: \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$, and $g: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$, so that f(n) = (n, n) and $g(n, m) = 2^n 3^m$. We can prove that both f and g are one-to-one maps.

We have $F: \mathcal{P}\mathbb{N} \longrightarrow \mathcal{P}\mathbb{N}$, and $F(C) = \mathbb{N} \setminus g((\mathbb{N} \times \mathbb{N}) \setminus f(\mathbb{N})).$

 \bullet $A_0 = \emptyset$.

Example

$$A_{1} = \mathbb{N} \setminus g((\mathbb{N} \times \mathbb{N}) \setminus f(\emptyset))$$

$$= \mathbb{N} \setminus g(\mathbb{N} \times \mathbb{N})$$

$$= \left\{ \begin{array}{l} 1, & 3, & 9, & \cdots \\ 2, & 6, & 18, & \cdots \\ 4, & 12, & 36, & \cdots \\ & & \cdots \end{array} \right\}$$

$$= \left\{ 0, 5, 7, 10, 11, 13, \cdots \right\}$$

Using the $C \subseteq A$ that satisfies $g^{-1}(A \setminus C) = B \setminus f(C)$, we define a function $h: A \longrightarrow B$, such that

$$h(a) = \begin{cases} f(a) & \text{if } a \in C, \\ b & \text{if } a \in A \setminus C \text{ and } g(b) = a. \end{cases}$$

The map h is a bijection.

Is h a Bijection?

• h is a one-to-one: f is one-to-one and it maps C to f(C). Each element of $A \setminus C$ is a g-image of some element of $B \setminus f(C)$ because we know

$$C = A \setminus g(B \setminus f(C)) \Rightarrow A \setminus C = g(B \setminus f(C))$$

Again g is one-to-one, hence for each $a \in A \setminus C$ there is exactly one $b \in B \setminus f(C)$.

Is h a Bijection (cont.)?

• h is onto B:B is divided in two parts. Images of C under f, f(C) and $B \setminus f(C)$ covered by invese images of g.

F is Monoton

 $F: \mathcal{P}A \longrightarrow \mathcal{P}A, \ F(X) = A \setminus g(B \setminus f(X)), \ X \subseteq A.$ Let $X \subseteq Y \subseteq A.$

$$X \subseteq Y \implies f(X) \subseteq f(Y),$$

$$\Rightarrow B \setminus f(Y) \subseteq B \setminus f(X),$$

$$\Rightarrow g(B \setminus f(Y)) \subseteq g(B \setminus f(X)),$$

$$\Rightarrow A \setminus g(B \setminus f(X)) \subseteq A \setminus g(B \setminus f(Y)).$$

F is monoton.

F is Continuous

Let $\{A_i\}_{i\in I}$ be a collection of the subsets of A.

$$F(\bigcup \{A_i\}_{i \in I}) = A \setminus g(B \setminus f(\bigcup \{A_i\}_{i \in I}))$$

$$= A \setminus g(B \setminus \bigcup \{f(A_i)\}_{i \in I})$$

$$= A \setminus g(\bigcap \{B \setminus f(A_i)\}_{i \in I})$$

$$= A \setminus \bigcap \{g(B \setminus f(A_i))\}_{i \in I}$$

$$= \bigcup \{A \setminus g(B \setminus f(A_i))\}_{i \in I}$$

$$= \bigcup \{F(A_i)\}_{i \in I}$$

Equinumerous Sets

- Two finite sets with equal number of elements are equinumerous. If there are n elements, n! bijections are possible.
- The set of $even(\mathbb{E})$ and $odd(\mathbb{O})$ non-negative integers are equinumerous to the set of natural numbers (N) and therefore to themselves. Following functions are bijections.

$$f: \mathbb{E} \longrightarrow \mathbb{N}, \ f(2k) = k; \ g: \mathbb{O} \longrightarrow \mathbb{N}, \ g(2k+1) = k;$$

$$h: \mathbb{E} \longrightarrow \mathbb{O}, \ h(2k) = 2k+1.$$

• The set of integers (\mathbb{Z}) is equinumerous to the set of natural numbers.

$$f_1: \mathbb{N} \longrightarrow \mathbb{Z}, \ f_1(n) = \begin{cases} n/2 & \text{if } n = 2k, \\ -(n+1)/2 & \text{otherwise.} \end{cases}$$

• The set $\mathbb{N} \times \mathbb{N}$ is equinumerous to N!

$$\{0,1,2,3,\cdots\} \simeq \left\{ \begin{array}{ll} (0,0), & (0,1), & (0,2),(0,3),\cdots \\ (1,0), & (1,1), & (1,2),(1,3),\cdots \\ (2,0), & (2,1), & (2,2),(2,3),\cdots \\ \vdots & & & \end{array} \right\}$$

 $f_2: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}, f_2(m,n) = (2m+1)2^n - 1 \text{ is a}$ bijection.

Product Map

Two maps $f: A \longrightarrow B$ and $g: C \longrightarrow D$ can induce a map, we call it $f \times g$ (it is a notation), from $A \times C$ to $B \times D$ in the following way.

 $f \times g : A \times C \longrightarrow B \times D, \ f \times g(a,c) = (f(a),g(c)) \in B \times D.$

- The set $\mathbb{Z} \times \mathbb{Z}$ is equinumerous to N.
 - $-f_1: \mathbb{N} \longrightarrow \mathbb{Z} \text{ is a bijection.}$
 - $-\operatorname{So} f_1^{-1}:\mathbb{Z}\longrightarrow\mathbb{N}$ is also a bijection.
 - We can be prove that $f_1^{-1} \times f_1^{-1} : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{N} \times \mathbb{N}$ is also a *bijection*.
 - $-f_2 \circ (^{-1}_1 \times f_1^{-1}) : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{N} \text{ is also a bijection.}$

Let us call $f_2 \circ ({}_1^{-1} \times f_1^{-1})$ as f_3 .

- The set of rational numbers (\mathbb{Q}) is equinumerous to \mathbb{N} .
- The inclusion map $i_{\mathbb{Q}} : \mathbb{Q} \longrightarrow \mathbb{Z} \times \mathbb{Z}$, so that $i_{\mathbb{Q}}(\frac{p}{q}) = (p,q)$ is an injection.
- $f_3 \circ i_{\mathbb{Q}} : \mathbb{Q} \longrightarrow \mathbb{N}$ is an injection.
- $i_{\mathbb{N}}: \mathbb{N} \longrightarrow \mathbb{Q}$, so that $i_{\mathbb{N}}(n) = \begin{cases} 0 & \text{if } n = 0, \\ \frac{n}{1} & \text{otherwise,} \end{cases}$ is also an injection.
- By $Sch\ddot{o}rder$ -Bernstein theorem there is a bijection from $\mathbb Q$ to $\mathbb N$.

k

- The set $\widetilde{\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}}$ is equinumerous to \mathbb{N} .
- The inclusion map $i_{\mathbb{N}} : \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$, so that $i_{\mathbb{N}}(n) = (n, 0, \cdots, 0)$ is an injection.
- The map $f_4: \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N} \longrightarrow \mathbb{N}$, so that $f_4(n_0, \dots, n_{k-1}) = 2^{n_0} \times 3^{n_1} \times \cdots \times p_{k-1}^{n_{k-1}}$, where '2' is the 0th, '3' is the 1st and p_{k-1} is the (k-1)th prime number, is also an *injection*.
- So there is a bijection by Schörder-Bernstein theorem.

- The collection of all finite subsets of natural numbers, $\mathcal{P}_{fin}\mathbb{N}$ is equinumerous to \mathbb{N} .
- $f_5: \mathbb{N} \longrightarrow \mathcal{P}_{fin}\mathbb{N}$, so that $f_5(n) = \{n\}$, is an one-to-one map.
- $f_6: \mathcal{P}_{fin} \mathbb{N} \longrightarrow \mathbb{N}$, so that $f_6(\{a_0, a_1, \dots, a_n\}) = 2^{a_0} + 2^{a_1} + \dots + 2^{a_n}$, is also an injection.
- ullet So there is a bijection by Schörder-Bernstein theorem.

Alphabet

An *alphabet* is a finite or finitely generated collection of *atomic* symbols.

- The alphabet of decimal (Arabic-Indian) numeral : $\{0, 1, \dots, 9\}$.
- The alphabet for elementary arithmetic : $\{0, 1, \dots, 9, +, -, \times, /, \}$.
- The English language the *alphabet* consists of $a, b, \dots, z, A, B, \dots, Z, 0, 1, \dots, 9$, differnt punctuation marks including 'blank space' and few other symbols.
- Alphabet for C Programming language is almost similar to the English alphabet.

Strings over an Alphabet

The total collection of finite length words using symbols of an alphabet (over an alphabet) Σ is denoted by Σ^* . This collection includs a special string called the null string (ε) .

• $\Sigma = \{a, b\}$: $\Sigma^* = \{\varepsilon, a, b, aa, abba, bb, aaa, aab, aba, abb, \cdots\}.$

Language over an Alphabet

A language L over an alphabet Σ is a subset of Σ^* .

• $\Sigma = \{0,1\}$: Unsigned-binary representation of even numbers without leading zeros is a the language

$$\{0, 10, 100, 110, 1000, 1010, \cdots\} \subset \Sigma^*.$$

• C^* Language: the collection of well-formed C^* programs is the subset of all possible strings over the alphabet of C^* language.

Language over an Alphabet (cont.)

 \bullet C^* program:

```
int main() { printf("Hi\n") ;}
```

• Not a C^* program:

```
int main { printf("Hi\n") ;}
```

Σ^* is Denumerable

Let there are n symbols in the alphabet Σ . We may view elements of Σ as the basic symbols (excluding zero) of a radix-(n+1) number system and Σ^* as a proper subset of natural numbers represented in the system.

- $\Sigma = \{a, b, c\}$: If we view this set as $\{1, 2, 3\}$, $\Sigma^* = \{\varepsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, \cdots\}$ may be viewed as $\{0, 1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, \cdots\}$.
- There is a natural bijection from the transformed Σ^* to \mathbb{N} .

FOC-IV : **CS 30053**

39

 Σ^* is Denumerable (cont.)

• Injection : i_{Σ^*}

- This is an infinite set hence there is an one-to-one map from \mathbb{N} .
- Hence the bijection f_7 by Schörader-Bernstein theorem.

Infinite Language over Σ

Any infinite language L over Σ is denumerable.

- $i_L: L \longrightarrow \Sigma^*$, so that $i_L(x) = x$ is one-to-one.
- $i_{\Sigma^*} \circ i_L : L \longrightarrow \mathbb{N} \text{ is } one\text{-to-one.}$
- There is an one-to-one map from \mathbb{N} to L, as L is infinite
- Therefore the *bijection* by *Schörader-Bernstein* theorem.

 C^* Programs

Every C^* program is a string over the C^* alphabet. Hence there are denumerably many C^* programs.

Only Two Species?

Is it the case that there are only two types of sets - finite and denumerable?