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‘Injection, Surjection and Bijection'
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‘Injective or One-to-one Map'

or an one-to-one map, if no two different elements of A
are assigned or mapped to the same element of B.

N

~

A function from a set A to a set B is called an injection
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k Figure 1: Injection or One-to-one Map
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K Figure 22 NOt One-to-one
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‘ Formal Definition '

A function f from a set A to a set B is called an
injection or an one-to-one map, if

f(a) = f(b) = a =0, forall a,b € A.

If two 1mages are same then their cotmages are identical.

For all a,b € A, [a #b = f(a) # f(b)] is equivalent to
f(a) = f(b) = a = b] (contrapositive).

N /
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Left Inverse I

Let f: A — B be a function. A left tnverse of f, if it

identity function on A.

N

~

exists, is a function g : B — A, so that go f = 14, the

_
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Figure 3: Left Inverse
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‘A Little Theorem'

if and only if f has a left inverse.

the condition.

N

Let f: A — B be a map where A # (). f is one-to-one

If A is null, there is no function from B # () to A and so

~
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Proof '

The proof ot this theorem has two parts.

e (only if =) : if f: A — B is an injection, then f
has a left inverse.

o (if:<=) : if f has a left inverse then f is one-to-one.

N

~
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(

a,

g(b) = 4 ag,

k

Proof : (=)

We assume the antecedent ‘f : A — B is an injection’ to

be true (otherwise the statement will be vacuously true).

Define g : B — A as follows:

if f(a) = b,
if b is not an image of any a € A, and

ap 1s any element of A.

(go f)(a) =g(f(a)) = g(b) = a, for all a € A, hence
go f =14, and g is the left inverse of f.

~

_
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/ Proof : (<) \

e We assume that a left inverse, say g : B — A, of f
exists i.e. go f = 14.

e We further assume that the statement is false i.e. f is
not one-to-one. This implies that A must have at

least two elements and there are two distinct elements
ag and aq in A such that f(ag) =b = f(ay).

e But then, ag = 14(ag) = (g o f)(ag) = g(f(ag)) =
g9(b) = g(f(a1)) = (go f)(a1) = 1a(a1) = a1, is a

contradiction. Hence the proof by reductio ad

k absurdum. J
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‘ Another Theorem '

feg=foh = g=h.

~

A map f: A— B is an injection if and only if, for any
set X and a pair of maps g,h : X — A,

12
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Proof '

Again there are two implications to prove.

e (only if =) : if f: A — B is an injection, then for
any set X and a pair of maps g, h: X — A,
foeg=foh = g=h.

o (if :<=) : if for any set X and a pair of maps
g h: X —A fog=foh = ¢g=h, then
f: A — B is an injection.

~

N /
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Proof : (=)

any set X and a pair of maps g,h: X — A,
fog=foh,then g=nh.

N

We assume the antecedent ‘f : A — B is an injection’ to

be true (otherwise the statement will be vacuously true).

The consequence is also in form of an implecation - ‘if for

~

_

14



'OC-IIT : CS 30053 G. Biswas : Computer Sc & Engg : IIT Kharagpur

s

Proof : (=) (cont.)

We again assume that the antecedent ‘if for any set X

only one map from a null set to any other set.

N

and a pair of maps g,h: X — A, fog= foh’is true.
It X is a null set there is nothing to prove as there can be

~

_
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fog=foh

For a non-null X,

=

~

Proof : (=) (cont.)

fro(fog)=fro(foh),

f 1s an injection and has a left-inverse.
(frof)eg=(frof)oh,

function composition is associative.
lyog=140h,

fr o f = 14, identity function.

g = h.

16
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Proof : (<)

We give an outline of a reductio ad absurdum proof.

e Assume ‘if for any set X and a pair of maps
g, h: X — A fog=foh = g=h’to be true.

e Further assume that f is not an njection.

e Construct two functions g, h so that f o g = f o h but
g # h - contradiction.

N /
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/ Composition of One-to-one Map' \

If f:A— B and g: B— C are one-to-one, then so is
gof.
Proof: Let ag,a1 € A, and (go f)(ag) = (go f)(a1).
(g0 f)la) = (go f)lar) = g(f(ao)) = g(f(ar))
= flao) = fla),

g 1s one-to-one

= ap = aq,
f is one-to-one

= (g o f) is one-to-one.

18
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/ ‘What Can Be Concluded?'

e What can we conclude if there is a one-to-one map
f:A— B?

e Lixistence of such a map guarantees that for each
element a of A, there is a unique element b of B.

e There may be extra elements of B that are not
associated to any element of A.

e The ‘size’ of B is no less than that of A. [Note that
we are not counting the elements of A or B. We are
just comparing their relative sizes.|

ko A is not larger than B, A < B.

~
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‘If f: A— B is One-to-one, A < BI

The cardinality of A is less than or equal to the
cardinality of B.

~
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N

Surjection or Onto Map'

f(D)=1f(d):de D} CB

Every element of B is an ‘ f-image’ of some a € A.

~

A function f : A — B is called onto B or a surjection if
f(A) = B, where for any D C A,

21
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A B

Figure 4: Surjection or Onto Map

_
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‘ Right Inverse I

g: B — A, such that f o g = 1p, the identity function
on B.

N

~

Let f: A —> B be amap. A right inverse of f is a map

_
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Figure 5: Right Inverse

_
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‘Prove the Following Propositions'

o let f:A— Band A#0. fis onto B iff f has a

right inverse.

e Amap f: A— B is onto B if and only if, for any

set X and a pair of maps g,h : B — X,
gof=hof =g=h

o If f:A— B and g: B — C be surjections, then

soisgo f.

~
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/ ‘What Can Be Concluded?'

e What can we conclude if there is an onto map
f:A— B?

e Each element b of B is an image of some a € A.

e More than one elements of A may be mapped to an
element of B, but no element of B is left without a

cormage.

e The ‘size’ of B is no more than that of A. [We are
comparing the relative sizes without counting.|

ko B is not larger than A, B < A.

~
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Iff:A—)BisOnto,BSAI

The cardinality of B is less than or equal to the
cardinality of A.

~
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‘Complementary Concepts (Dual)'
One-to-one and Onto Maps'

~
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‘ Bijection I

if it is both an injection (one-to-one) as well as a
surjection (onto).

and each element of B has a coimage in A.

N

A function f : A — B is called a bijection from A to B

Every element of A is mapped to a unique element of B

~

_
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Figure 6: Bljection
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Unique Inverse of Bijection'

Let f : A — B be a bijection.

= f is one-to-one and onto,
= f has a left-tnverse f;, and

f also has a right inverse, fg.

® /1. = /R,

e Inverse is unique.

N

~
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Proof I

We have f,of =14 and fo fr=15.

N

~

o fr = frolp = fro(fofr) = (frof)ofr =1a0fr = fr.

_
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‘ Proof (cont.) I

Let fi = fr = f~!, now we have fo f~! =15 and
f_l O f — 1A-
e Let there be another inverse f’, then we also have
fof'=1pand f o f =14.
o fl=flolg=fTo(fof)=(fTof)of =
1A O f’ = f’.

The tnverse ot a bijection is unique.

N

~
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gof.

N

Composition of Bijection'

It f:A— Band g: B — C are bijections then so is

Prove the proposition

~
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‘What Can Be Concluded?.

e What can we conclude if there is a bijective map
f:A— B?

e No two elements of A are mapped to the same element
of B and each element of B has a cotmage in A.

e The ‘size’ of A matches with the size of B. [We are
not counting.]

o A is equinumerous to B, A ~ B.

N /
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N

If f:A— Bisa Bijection,'
f 1s an Injection and also a Surjection,'
‘AgBandBSA,I

A~ B

~

The cardinality of A is same as the cardinality of B.

_
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‘It is Funny!'

A proper subset B of a set A may be equinumerous to A.

Consider the set of natural numbers (N) and the set of
even numbers (E), E C N.

e Define f: N — E, so that f(n) = 2n.

e It is a bijection with the inverse f~!: E — N,
defined as f~1(k) = k/2.

o (f7Vo f)(n) = F1(f(n)) = f7(2n) = 20/2 = n.

o (fof™)k)=F(f (k) = f(k/2) =25 k/2= k.

_
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‘ The Bijection I

N $— =

5 6 7 8 9 10 ---

3 4
(O A A A A
6 8

10 12 14 16 18 20

~
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