Injection, Surjection and Bijection

FOC-III : **CS 30053**

Injective or One-to-one Map

A function from a set A to a set B is called an *injection* or an *one-to-one* map, if no two different elements of A are assigned or mapped to the same element of B.

Formal Definition

A function f from a set A to a set B is called an injection or an one-to-one map, if

$$f(a) = f(b) \Rightarrow a = b$$
, for all $a, b \in A$.

If two *images* are same then their *coimages* are identical. For all $a, b \in A$, $[a \neq b \Rightarrow f(a) \neq f(b)]$ is equivalent to $[f(a) = f(b) \Rightarrow a = b]$ (contrapositive).

Left Inverse

Let $f: A \longrightarrow B$ be a function. A *left inverse* of f, if it exists, is a function $g: B \longrightarrow A$, so that $g \circ f = 1_A$, the identity function on A.

A Little Theorem

Let $f: A \longrightarrow B$ be a map where $A \neq \emptyset$. f is one-to-one if and only if f has a left inverse.

If A is *null*, there is no function from $B \neq \emptyset$ to A and so the condition.

Proof

The *proof* of this theorem has two parts.

- $(only\ if:\Rightarrow):$ if $f:A\longrightarrow B$ is an injection, then f has a $left\ inverse$.
- $(if:\Leftarrow)$: if f has a left inverse then f is one-to-one.

 $\mathbf{Proof:}\ (\Rightarrow)$

We assume the antecedent ' $f: A \longrightarrow B$ is an injection' to be true (otherwise the statement will be vacuously true).

Define $g: B \longrightarrow A$ as follows:

 $g(b) = \begin{cases} a, & \text{if } f(a) = b, \\ a_0, & \text{if } b \text{ is not an image of any } a \in A, \text{ and} \\ a_0 & \text{is any element of } A. \end{cases}$

 $(g \circ f)(a) = g(f(a)) = g(b) = a$, for all $a \in A$, hence $g \circ f = 1_A$, and g is the *left inverse* of f.

11

$Proof: (\Leftarrow)$

- We assume that a *left inverse*, say $g: B \longrightarrow A$, of f exists i.e. $g \circ f = 1_A$.
- We further assume that the statement is false i.e. f is not one-to-one. This implies that A must have at least two elements and there are two distinct elements a_0 and a_1 in A such that $f(a_0) = b = f(a_1)$.
- But then, $a_0 = 1_A(a_0) = (g \circ f)(a_0) = g(f(a_0)) = g(b) = g(f(a_1)) = (g \circ f)(a_1) = 1_A(a_1) = a_1$, is a contradiction. Hence the proof by reductio ad absurdum.

Another Theorem

A map $f:A\longrightarrow B$ is an *injection* if and only if, for any set X and a pair of maps $g,h:X\longrightarrow A$,

$$f \circ g = f \circ h \implies g = h.$$

Proof

Again there are two implications to prove.

- $(only\ if:\Rightarrow):$ if $f:A\longrightarrow B$ is an injection, then for any set X and a pair of maps $g,h:X\longrightarrow A,$ $f\circ g=f\circ h \Rightarrow g=h.$
- $(if:\Leftarrow)$: if for any set X and a pair of maps $g,h:X\longrightarrow A,\ f\circ g=f\circ h\ \Rightarrow\ g=h,$ then $f:A\longrightarrow B$ is an injection.

14

| Proof: (\Rightarrow)

We assume the antecedent ' $f:A\longrightarrow B$ is an injection' to be true (otherwise the statement will be vacuously true). The consequence is also in form of an implecation - 'if for any set X and a pair of maps $g,h:X\longrightarrow A$, $f\circ g=f\circ h$, then g=h'.

Proof: (\Rightarrow) (cont.)

We again assume that the antecedent 'if for any set X and a pair of maps $g, h: X \longrightarrow A$, $f \circ g = f \circ h$ ' is true. If X is a null set there is nothing to prove as there can be only one map from a null set to any other set.

Proof: (\Rightarrow) (cont.)

For a non-null X,

$$f \circ g = f \circ h \implies f_L \circ (f \circ g) = f_L \circ (f \circ h),$$

f is an injection and has a left-inverse.

$$\Rightarrow (f_L \circ f) \circ g = (f_L \circ f) \circ h,$$

function composition is associative.

$$\Rightarrow 1_A \circ g = 1_A \circ h,$$

 $f_L \circ f = 1_A$, identity function.

$$\Rightarrow g = h$$
.

17

 $\mathbf{Proof:}\ (\Leftarrow)$

We give an outline of a reductio ad absurdum proof.

- Assume 'if for any set X and a pair of maps $g, h: X \longrightarrow A, f \circ g = f \circ h \Rightarrow g = h$ ' to be true.
- \bullet Further assume that f is not an *injection*.
- Construct two functions g, h so that $f \circ g = f \circ h$ but $g \neq h$ contradiction.

 \Rightarrow $(g \circ f)$ is one-to-one.

Composition of One-to-one Map

If $f:A\longrightarrow B$ and $g:B\longrightarrow C$ are one-to-one, then so is $g\circ f.$

Proof: Let $a_0, a_1 \in A$, and $(g \circ f)(a_0) = (g \circ f)(a_1)$. $(g \circ f)(a_0) = (g \circ f)(a_1) \implies g(f(a_0)) = g(f(a_1))$ $\Rightarrow f(a_0) = f(a_1),$ g is one-to-one $\Rightarrow a_0 = a_1,$ f is one-to-one

What Can Be Concluded?

- What can we conclude if there is a *one-to-one* map $f: A \longrightarrow B$?
- Existence of such a map guarantees that for each element a of A, there is a unique element b of B.
- There may be extra elements of B that are not associated to any element of A.
- The 'size' of B is no less than that of A. [Note that we are not counting the elements of A or B. We are just comparing their relative sizes.]
- A is not larger than $B, A \leq B$.

If $f: A \longrightarrow B$ is One-to-one, $A \leq B$

The **cardinality** of A is less than or equal to the **cardinality** of B.

Surjection or Onto Map

A function $f: A \longrightarrow B$ is called *onto* B or a *surjection* if f(A) = B, where for any $D \subseteq A$,

$$f(D) = \{f(d) : d \in D\} \subseteq B$$

Every element of B is an 'f-image' of some $a \in A$.

Right Inverse

Let $f: A \longrightarrow B$ be a map. A right inverse of f is a map $g: B \longrightarrow A$, such that $f \circ g = 1_B$, the identity function on B.

Prove the Following Propositions

- Let $f: A \longrightarrow B$ and $A \neq \emptyset$. f is onto B iff f has a right inverse.
- A map $f: A \longrightarrow B$ is onto B if and only if, for any set X and a pair of maps $g, h: B \longrightarrow X$,

$$g \circ f = h \circ f \implies g = h.$$

• If $f:A\longrightarrow B$ and $g:B\longrightarrow C$ be surjections, then so is $g\circ f$.

What Can Be Concluded?

- What can we conclude if there is an *onto* map $f: A \longrightarrow B$?
- Each element b of B is an image of some $a \in A$.
- More than one elements of A may be mapped to an element of B, but no element of B is left without a coimage.
- The 'size' of B is no more than that of A. [We are comparing the relative sizes without counting.]
- B is not larger than $A, B \leq A$.

If $f: A \longrightarrow B$ is Onto, $B \leq A$

The **cardinality** of B is less than or equal to the **cardinality** of A.

Complementary Concepts (Dual)

One-to-one and Onto Maps

Bijection

A function $f: A \longrightarrow B$ is called a bijection from A to B if it is both an injection (one-to-one) as well as a surjection (onto).

Every element of A is mapped to a unique element of B and each element of B has a coimage in A.

30

Unique Inverse of Bijection

Let $f: A \longrightarrow B$ be a bijection.

- \Rightarrow f is one-to-one and onto,
- \Rightarrow f has a left-inverse f_L and

f also has a right inverse, f_R .

- \bullet $f_L = f_R$,
- Inverse is unique.

Proof

We have $f_L \circ f = 1_A$ and $f \circ f_R = 1_B$.

• $f_L = f_L \circ 1_B = f_L \circ (f \circ f_R) = (f_L \circ f) \circ f_R = 1_A \circ f_R = f_R$.

Proof (cont.)

Let $f_L = f_R = f^{-1}$, now we have $f \circ f^{-1} = 1_B$ and $f^{-1} \circ f = 1_A$.

- Let there be another inverse f', then we also have $f \circ f' = 1_B$ and $f' \circ f = 1_A$.
- $f^{-1} = f^{-1} \circ 1_B = f^{-1} \circ (f \circ f') = (f^{-1} \circ f) \circ f' = 1_A \circ f' = f'.$

The *inverse* of a *bijection* is unique.

Composition of Bijection

If $f:A\longrightarrow B$ and $g:B\longrightarrow C$ are bijections then so is $g\circ f.$

Prove the proposition

What Can Be Concluded?

- What can we conclude if there is a bijective map $f: A \longrightarrow B$?
- No two elements of A are mapped to the same element of B and each element of B has a coimage in A.
- The 'size' of A matches with the size of B. [We are not counting.]
- A is equinumerous to $B, A \simeq B$.

If $f: A \longrightarrow B$ is a Bijection,

f is an Injection and also a Surjection,

$$A \leq B$$
 and $B \leq A$,

$$A \simeq B$$

The **cardinality** of A is same as the **cardinality** of B.

It is Funny!

A proper subset B of a set A may be equinumerous to A. Consider the set of natural numbers (\mathbb{N}) and the set of even numbers (\mathbb{E}) , $\mathbb{E} \subset \mathbb{N}$.

- Define $f: \mathbb{N} \longrightarrow \mathbb{E}$, so that f(n) = 2n.
- It is a bijection with the inverse $f^{-1}: \mathbb{E} \longrightarrow \mathbb{N}$, defined as $f^{-1}(k) = k/2$.
- $(f^{-1} \circ f)(n) = f^{-1}(f(n)) = f^{-1}(2n) = 2n/2 = n.$
- $(f \circ f^{-1})(k) = f(f^{-1}(k)) = f(k/2) = 2 * k/2 = k$.

38

The Bijection