Answer with a short justification whether the following statements are *true* or *false*. No credit will be given for writing only *true* or *false*.

(a) A set may be equinumerous to its proper subset.

Ans. The statement is true. If the set is infinite then a proper subset may be equinumerous to the set. As an example - $\mathbb{N} \equiv \mathbb{E}$. The function $f: \mathbb{N} \longrightarrow \mathbb{E}$, f(n) = 2n, is a bijection.

(b) No left-inverse of a map $f: A \longrightarrow B$ is present if it is not one-to-one.

Ans. Let $f:A\longrightarrow B$ is not one-to-one, but $g:B\longrightarrow A$ is a left-inverse of f i.e. there exists a_0 and a_1 such that $f(a_0)=f(a_1)$ and also $g\circ f=1_A$. But then $g(f(a_0))=g(f(a_1))$, implies $a_0=a_1$, a contradiction. Hence the statement is true.

(c) Given the map $f:A\longrightarrow B$, we define a map $F:\mathcal{P}B\longrightarrow \mathcal{P}A$, so that $F(D)=\{c\in A: f(c)\in D\},\ D\subseteq B$. The map F is monoton i.e. $C\subseteq D\Rightarrow F(C)\subseteq F(D)$.

Ans. $F(C) = \{c \in A : f(c) \in C\} = \{c \in A : f(c) \in C \subseteq D\} \subseteq \{c \in A : f(c) \in D\} = F(D)$. Hence the statement is true.

(d) The collection of all finite subsets of natural numbers, $\mathbf{2}_{fin}^{\mathbb{N}} = \{A: A \subset \mathbb{N} \text{ and } A \text{ is finite}\}$, is not denumerable.

Ans. The statement is false. Let $f: \mathbf{2}_{fin}^{\mathbb{N}} \longrightarrow \mathbb{N}$ be defined as follows.

$$f(A) = \left\{ egin{array}{ll} 0 & ext{if } A = \emptyset, \ 2^{a_1} + \cdots + 2^{a_k} & ext{if } A = \{a_1, \cdots, a_k\} \end{array}
ight.
ight.$$

It can be shown to be a bijection.

- (e) A denumerable set of variables can be defined inductively using a *finite alphabet*. Ans. Consider the alphabet $\{x,0\}$. Variable names are defined inductively as follows.
 - Basis: x is a variable name.
 - Induction: If v is a variable name then so is v0.
 - Nothing else is a variable name.

The variable names are $\{x, x0, x00, x000, \cdots\}$.

(f) Fifteen (15) different equivalence relations can be defined on a set of four elements $A = \{a, b, c, d\}$. [Note that an equivalence relation divides the set into nonempty parts.]

Ans. The statement is true. The different partitions are.

$$\begin{array}{llll} \{\{a\},\{b\},\{c\},\{d\}\} & \{\{a,b\},\{c,d\}\} & \{\{a,c\},\{b,d\}\} & \{\{a,d\},\{b,c\}\} \\ \{\{a\},\{b,c,d\}\} & \{\{b\},\{a,c,d\}\} & \{\{c\},\{a,b,d\}\} & \{\{d\},\{a,b,c\}\} \\ \{\{a\},\{b\},\{c,d\}\} & \{\{a\},\{c\},\{b,d\}\} & \{\{a\},\{d\},\{b,c\}\} & \{\{b\},\{c\},\{a,d\}\} \\ \{\{b\},\{d\},\{a,c\}\} & \{\{c\},\{d\},\{a,b\}\} & \{\{a,b,c,d\}\} \end{array}$$

(g) The λ -term $(\lambda xyz.xz(yz))(\lambda ab.a)(\lambda p.pp)(\lambda xy.y)$ can be reduced to 'false'. Ans. The statement is true.

```
(\lambda xyz.xz(yz))(\lambda ab.a)(\lambda p.pp)(\lambda xy.y) \rightarrow_{\beta} (\lambda yz.(\lambda ab.a)z(yz))(\lambda p.pp)(\lambda xy.y)
\rightarrow_{\beta} (\lambda yz.(\lambda b.z)(yz))(\lambda p.pp)(\lambda xy.y)
\rightarrow_{\beta} (\lambda yz.z)(\lambda p.pp)(\lambda xy.y)
\rightarrow_{\beta} (\lambda z.z)(\lambda xy.y)
\rightarrow_{\beta} (\lambda xy.y)
= \mathbf{false}
```

(h) Reflexive-transitive closure of a binary relation R on a set A is always an equivalence relation.

Ans. The statement is false because the relation may not be symmetric.

- (i) Every β -reduction of any λ -term will give a β -normal form. Ans. The statement is false. The lambda term $(\lambda x.xx)(\lambda x.xx)$ does not have any β -normal form.
- (j) The decision problem, "the vertex \mathbf{d} is reachable from the vertex \mathbf{s} in a undirected graph G", can be translated to a decision problem of a language.

Ans. A graph G is represented as a 2-tuple of data (V, E). The collection of encodings of (G, s, d) over an alphabet $\{0, 1, *\}$, so that d is reachable from s in G is a language over $\{0, 1, *\}$. Therefore the decision problem of graph is a decision problem of a language.

2. [**5**]

Let the collection of C^* programs that calculate functions on the set of natural numbers, $\mathbb{N} \to \mathbb{N}$, be $\mathcal{C}_{\mathbb{N}}$. Prove by direct use of Cantor's diagonal argument that $\mathcal{C}_{\mathbb{N}}$ cannot be equinumerous to the collection of all functions on natural numbers $(\mathbb{N}^{\mathbb{N}})$.

Ans. Let each function from $\mathbb N$ to itself be computed by a $\mathbb C^*$ program. Let the program P_i computes the function $f_i, i \in \mathbb N$. This can be so written as the collection of $\mathbb C^*$ programs and the set of natural numbers are equinumerous. Consider the function $f: \mathbb N \longrightarrow \mathbb N$ defined as follows.

$$f(n) = \begin{cases} 5 & \text{if } f_n(n) \neq 5 \\ 6 & \text{if } f_n(n) = 5. \end{cases}$$

The function f cannot be identified with any f_i

$$f(n) = 5$$
 iff $f_n(n) \neq 5$, for all $n \in \mathbb{N}$.

Therefore all functions on \mathbb{N} cannot be computed by a \mathbb{C}^* program.

3. [2+2+1]

Give an example of a *fixed point combinator* other than the Curry and the Turing combinators. Show that it is a *fixed point combinator*. Justify that there are infinite many of them.

Ans. Let $A = \lambda cury.y(curry)$ and F = AAAA. We get

$$Fu = AAAAu = (\lambda cury.y(curry))AAAu \rightarrow_{\beta} u(AAAAu) = u(Fu).$$

Let v_1, v_2, \cdots, v_k be variables such that only two of them (except the kth one) are same i.e. $v_i = v_j, \ 1 \leq i < j < k$. We define $A = \lambda v_1 \cdots v_i \cdots v_{j-1} v_{j+1} \cdots v_k \cdot v_k (v_1 \cdots v_k)$ and $F = \overbrace{A \cdots A}^{k-1}$. F is a fixed point combinator.

4. Give an inductive definition of 'remainder m n' (m%n). Justify that remainder is λ -definable. Start from the Barendregt numeral and define everything that is required

Ans. Barendregt Numerals: $0 \equiv \lambda x.x$ and $n+1 \equiv (F,n) = \lambda x.xFn$.

(a) $\mathbf{rem}\ m\ n\ = \left\{ \begin{array}{ll} m & \text{if (less}\ m\ n),\\ \mathbf{rem}\ (\mathbf{min}\ m\ n)n & \text{else}. \end{array} \right.$

Fixed point of: $\lambda f.\lambda mn.(\text{less } m \ n) \ m \ (f \ (\min \ m \ n) \ n).$

(b)

to define remainder.

$$\operatorname{less} \ m \ n \ = \left\{ \begin{array}{ll} T & \text{ if (and (isZero} \ m) (not \ (isZero} \ n))), \\ F & \text{ if (isZero} \ n), \\ \operatorname{less} \ (\operatorname{pred} \ m) \ (\operatorname{pred} \ n) & \operatorname{else}. \end{array} \right.$$

The lambda term is easy.

(c) $\mathbf{min} \ m \ n \ = \left\{ \begin{array}{ll} 0 & \text{if isZero} \ m, \\ m & \text{if (isZero} \ n), \\ \mathbf{min} \ (\mathbf{pred} \ m) \ (\mathbf{pred} \ n) \end{array} \right.$

Again a fixed point.

(d) Definitions of and, pred, is Zero are already known.