Computer Science & Engineering Department I. I. T. Kharagpur

Foundations of Computing: CS30053

3rd Year : Autumn Semester Class Test I (Answers)

From 1730hr to 1830hr

Date: 26th August, 2003

1. Give a bijection (in closed form) from the set of natural numbers, $\mathbb{N} = \{0, 1, 2, \dots\}$ to the set of integers divisible by $\mathbf{5}$, $\mathbb{Z}_5 = \{\dots, -10, -5, 0, 5, 10, \dots\}$.

Ans. $f: \mathbb{N} \longrightarrow \mathbb{Z}_5$ is defined as follows.

$$f(n) = \begin{cases} \frac{5n}{2} & \text{if } n \text{ is even,} \\ -\frac{5(n+1)}{2} & \text{if } n \text{ is odd.} \end{cases}$$

[2]

2. Let $f:A\longrightarrow \mathbb{N}$ and $g:\mathbb{N}\times\mathbb{N}\longrightarrow C$ be bijections. Show that there is a bijection from A to C. [Do not use $Schr\"{o}der$ -Bernstein theorem.]

Ans. We know that $h: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ defined as follows is a bijection.

$$h(k) = (m, n)$$
 such that $k + 1 = 2^m(2n + 1)$

We also know that composition of bijections is a bijection - $(g \circ h \circ f) : A \longrightarrow C$ is a bijection.

- 3. Let $f:A\longrightarrow B$ be an injection and $g:B\longrightarrow A$ be a surjection. Justify or refute -
 - 'g o f is always a bijection.'

Ans. Let $A = \{a_1, a_2\}$ and $B = \{b_1, b_2, b_3\}$, so that $f(a_1) = b_1$, $f(a_2) = b_3$ and $g(b_1) = a_2$, $g(b_2) = a_1$ and $g(b_3) = a_2$, implies that $g(f(A)) = \{a_2\}$.

• 'if g(f(A)) = A, then $g \circ f$ is a bijection.'

Ans. We show that it is not one-to-one. Let $A = \mathbb{N}$ and $B = \mathbb{E}$, f(n) = 2n, g(0) = 0, g(2) = 1, g(4) = g(6) = 2 and g(2k) = k - 1, k > 3. Now g(f(2)) = 2 = g(f(3)). [3]

4. A binary relation R over a set A with n elements (|A| = n) is called reflexive if $(\mathbf{a}, \mathbf{a}) \in \mathbf{R}$, for all $a \in A$. How many reflexive relations are possible on A. Justify your answer.

Ans. There are n^2 elements in $A \times A$. All the diagonal elements (a, a), $a \in A$ are to be present to make a relation reflexive. Then we have choice out of $n^2 - n$ elements in 2^{n^2-n} ways.

5. Show that there is a bijection from the closed interval [0, 1] to the closed interval [0, 2] on the real line.

Ans. Let $f:[0,1] \longrightarrow [0,2]$ be f(x)=2x. It is a bijection.

- 6. Let V be a denumerable set of variable names. We inductively define the set of propositional terms (P) in the following way.
 - '0' and '1' are in P.
 - Every $v \in V$ (variable name) is in P.
 - If p and q are in P, then so are $(p \Rightarrow q)$ and $\neg p$.
 - Nothing else is in P.

Justify that P is denumerable.

Ans. The set V can be constructed using two symbols $\{v, I\}$, $V = \{v, vI, vII, \cdots\}$. Other symbols are $\{0, 1, (,), \Rightarrow, \neg\}$. Therefore a propositional term is a string over $\{v, I, 0, 1, (,), \Rightarrow, \neg\}$ and the collection is denumerable.

7. Consider the alphabet $\Sigma = \{0, 1, *\}$. The set Σ^n is the collection of all strings over Σ of length exactly n i.e. $\Sigma^0 = \{\varepsilon\}$, $\Sigma^1 = \{0, 1, *\}$, $\Sigma^2 = \{\not 0, \not 1, \not *, 00, 01, 0*, 10, 11, 1*, *0, *1, **\}$, etc. Consider the string

01010101010101010101010101010101

We may describe it as 01*1111; which may be interpreted as '01' repeated '1111' times. The description is shorter than the actual string.

Give a proof that every string of Σ^n cannot have a **shorter description** using the symbols of Σ .

Ans. Total number of strings of length less than n over the three element alphabet is $\sum_{i=1}^{n-1} 3^i < 3^n$, the total number of strings of length n.