Computer Science & Engineering Department I. I. T. Kharagpur

Foundations of Computing: CS30053

3rd Year: Autumn Semester Class Test I (Total Marks: 20)

From 1730hr to 1830hr

Date: 26th August, 2003

Answer All Questions Do not write illogical statements.

- 1. Give a bijection (in closed form) from the set of natural numbers, $\mathbb{N} = \{0, 1, 2, \dots\}$ to the set of integers divisible by $\mathbf{5}$, $\mathbb{Z}_5 = \{\dots, -10, -5, 0, 5, 10, \dots\}$.
- 2. Let $f: A \longrightarrow \mathbb{N}$ and $g: \mathbb{N} \times \mathbb{N} \longrightarrow C$ be bijections. Show that there is a bijection from A to C. [Do not use $Schr\"{o}der$ -Bernstein theorem.]
- 3. Let $f:A\longrightarrow B$ be an injection and $g:B\longrightarrow A$ be a surjection. Justify or refute -
 - ' $g \circ f$ is always a bijection.'
 - 'if g(f(A)) = A, then $g \circ f$ is a bijection.'
- 4. A binary relation R over a set A with n elements (|A| = n) is called reflexive if $(\mathbf{a}, \mathbf{a}) \in \mathbf{R}$, for all $a \in A$. How many reflexive relations are possible on A. Justify your answer.
- 5. Show that there is a bijection from the closed interval [0, 1] to the closed interval [0, 2] on the real line.
- 6. Let V be a denumerable set of variable names. We inductively define the set of propositional terms (P) in the following way.
 - '0' and '1' are in P.
 - Every $v \in V$ (variable name) is in P.
 - If p and q are in P, then so are $(p \Rightarrow q)$ and $\neg p$.
 - Nothing else is in P.

Justify that P is denumerable.

 $[\mathbf{3}]$

7. Consider the alphabet $\Sigma = \{0, 1, *\}$. The set Σ^n is the collection of all strings over Σ of length exactly n i.e. $\Sigma^0 = \{\varepsilon\}$, $\Sigma^1 = \{0, 1, *\}$, $\Sigma^2 = \{\not 0, \not 1, \not *, 00, 01, 0*, 10, 11, 1*, *0, *1, **\}$, etc. Consider the string

01010101010101010101010101010101

We may describe it as 01*1111; which may be interpreted as '01' repeated '1111' times. The description is shorter than the actual string.

Give a proof that every string of Σ^n cannot have a **shorter description** using the symbols of Σ .