Formal Language and Automata Theory (CS21004)

Tutorial - IX

Class: CSE 2nd Year

 $Date:\,22^{\rm nd}\,{\rm March},\,2010$

Exercise 1. Consider the following CFG in CNF and show using the CYK table construction that the string '*aaaaa*' is in the language of the grammar L(G).

 $\begin{array}{l} S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow DD \mid b \\ D \rightarrow AB \mid a \end{array}$

where S is the start symbol, $\{S, A, B, D\}$ are the non terminals and $\{a, b\}$ are the terminals.

Exercise 2. A language L is prefix-closed if for every $x \in L$, every prefix of x is also is in L. Let L be an *infinite*, prefix-closed, context-free language. Show that L has an *infinite* regular subset.

Exercise 3. Design a DTM that accepts the language $L_1 = \{a^i b^j c^k : i, j, k \ge 1, i+j=k\}$.

Exercise 4. Design a DTM that converts a string a^n to the binary representation of n. In fact it transforms an input aaa...aa to binary representation of n.

Exercise 5. What will be the running time complexity of a singly-infinite tape DTM that recognises the language $L = \{x \in \{a, b\}^* : x = x^R\}$? Can you think of a Turing machine model where it can be better?

Exercise 6. Convert the machine of *exercise* 3 so that either it will accept a string or it will loop-forever. The language is $L_1 = \{a^i b^j c^k : i, j, k \ge 1, i+j=k\}$.