Formal Language and Automata Theory (CS21004)

Tutorial - VI

Class: CSE 2nd Year

Date: 15th February, 2010

Exercise 1. $L = \{x \in \{a, b\}^* : x = a^m b^n, n \ge m \ge 0\}$ is not regular. **Exercise 2.** $L = \{x \in \{a, b\}^* : x = a^m b^n, m \neq n\}$ is not regular. **Exercise 3.** $L = \{x \in \{a, b\}^* : |x|_a \neq |x|_b\}$ is not regular. **Exercise 4.** $L = \{x \in \{a, b\}^* : x = a^m b^n, m \ge n \ge 0\}$ is not regular. **Exercise 5.** $L = \{x \in \{a, b\}^* : |x|_a > |x|_b\}$ is not regular. **Exercise 6.** $L = \{x \in \{a, b\}^* : x = ww, \text{ where } w \in \{a, b\}^*\}$ is not regular. **Exercise 7.** $L = \{x \in \{a, b\}^* : x = x^R\}$ is not regular. **Exercise 8.** $L = \{x \in \{a, b\}^* : x \neq x^R\}$ is not regular. **Exercise 9.** $L = \{x \in \{a, b\}^* : x = a^m b^n, m + n = l^2, m, n, l \ge 0\}$ is not regular. **Exercise 10.** $L = \{x \in \{a, b\}^* : x = a^{n!}, n \ge 0\}$ is not regular. **Exercise 11.** $L = \{x \in \{a\}^* : x = a^p, p \text{ is } a \text{ prime number}\}$ is not regular. **Exercise 12.** $L = \{x \in \{a, b\}^* : |x|_a \text{ is } a \text{ prime number } \}$ is not regular **Exercise 13.** $L = \{x \in \{a, b\}^* : x = a^m b^n, \operatorname{GCD}(m, n) \neq 1\}$ is not regular. **Exercise 14.** $L = \{x \in \{a, b\}^* : x = a^m b^n, \text{GCD}(m, n) = 1\}$ is not regular. **Exercise 15.** Let $\Sigma = \{0, 1, +, =\}$ and the language $L = \{x = y + z : x, y, z \in \{0, -1\}\}$ 1 * so that x is the sum of y and z }. L is not regular. **Exercise 16.** How do you simulate an NFA in a C program?

Exercise 17. Let $\Sigma = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\} = \{a_0, a_1, a_2, a_3\}$. A string over Σ may be interpreted as two rows of 0's and 1's e.g. $x = a_0 a_2 a_2 a_3 a_1 = \begin{bmatrix} 01110\\00011 \end{bmatrix} = \begin{bmatrix} x_t\\x_b \end{bmatrix}$. We define the language L over Σ , $L = \{x \in \Sigma^* : 3x_t = x_b\}$. Show that L is regula

Exercise 18. Let L be a language over Σ . We define the language NOEXTEND $(L) = \{x \in L \}$ Σ^* : x is not a proper prefix of any string of L. Show that if L is regular, then so is NOEXTEND(L).

Exercise 19. Let *L* be a language over $\Sigma = \{a, b\}$. We define $L_{\frac{1+3}{3}} = \left\{ xz \in \{a, b\}^* : \exists y \in \{a, b\}^*, |x| = |y| = |z| \text{ and } xyz \in L \right\}$. The language $L_{\frac{1+3}{3}}$ need not be regular even if L is not regular.

Exercise 20. The *shuffle* of two strings $x, y \in \Sigma^*$ is the set of all strings generated by shuffling the characters of x and y (the relative order of characters in the original strings are preserved). As an example

 $ab \parallel cb = \{abcd, acbb, cabb, cbab\}$. We can define $x \parallel y$ inductively as follows:

$$x \parallel y = \begin{cases} x & \text{if } y = \varepsilon, \\ y & \text{if } x = \varepsilon, \\ (u \parallel vb) \cdot \{a\} \cup (ua \parallel v) \cdot \{b\}, \text{ if } x = ua, y = vb. \end{cases}$$

The *shuffle* of two languages L_1 and L_2 is $L_1 || L_2 =$ U $x \in L_1, y \in L_2$ As an example $\{ab, a\} || \{cb\} = \{abcb, acbb, cabb, cbab, acb, cab, cba\}$. Show that if L_1 and L_2 are regular, then $L_1 || L_2$ is also regular.

Exercise 21. If L is a language over Σ , let $L_{\frac{1}{2}} = \{x \in \Sigma^* : \text{there is } y \in \Sigma^*, xy \in L\}$. Show that $L_{\frac{1}{2}}$ is regular if L is regular.

Exercise 22. The *perfect shuffle* of two strings $x, y \in \Sigma^*$ of equal lengths is the string of double length. If $x = x_1x_2 \cdots x_k$ and $y = y_1y_2 \cdots y_k$, the *perfect shuffle* $x||_p y = x_1y_1x_2y_2\cdots x_ky_k$. The *perfect shuffle* of two languages L_1 and L_2 is $L_1 ||_p L_2 = \{w \in \{a, b\}^* : w = x_1y_1x_2y_2\cdots x_ky_k, \text{ where } x_1x_2\cdots x_k \in L_1 \text{ and } y_1y_2\cdots y_k \in L_2\}$. Show that the class of regular languages is closed under *perfect shuffle*.