Formal Language and Automata Theory (CS21004)

Tutorial - V

Class: CSE 2^{nd} Year

Date: 8^{th} February, 2010

Exercise 1. Design a DFA that recognises the language $L = \{a^n : n \text{ is divisible by } 2 \text{ or } 5\}$.

Exercise 2. Give description of a DFA over $\Sigma = \{a, b\}$ that recognizes the language $L_3 = \{x \in \Sigma^* : |x|_a \ge 3 \text{ and } |x|_b \le 2\}.$

Exercise 3. Let the alphabet be $\Sigma = \{a, b\}$.

- a) Show that there is a regular language that cannot be recognised by a DFA with one final state.
- b) Show that there is a regular language that cannot be recognised by a DFA with less than k final states.

Exercise 4. Reverse of a string x is denoted by x^R . It is a function $-^R : \Sigma^* \to \Sigma^*$ defined as follows:

$$x^{R} = \begin{cases} \varepsilon & \text{if } x = \varepsilon, \\ y^{R} \sigma & \text{if } x = \sigma y, \ \sigma \in \Sigma \text{ and } y \in \Sigma^{*}. \end{cases}$$

The *reverse* of a language L is denoted by L^R and is defined as $L^R = \{x^R \in \Sigma^* : x \in L\}$. If L is regular, then so is L^R .

Exercise 5. Show that the language

 $L = \{x \in \{0, 1\}^* : x \text{ has equal number of } 01 \text{ and } 10 \text{ as substrings} \}$ is regular.

Exercise 6. Design NFA for the following languages and convert it to DFA.

 $L_{5a} = \{ x \in \{0, 1\}^{\star} : \exists y \in \{0, 1\}^{\star} \text{ such that } x = y1a1, \text{ where } a \in \{0, 1\} \}.$

Exercise 7. Let Σ be an alphabet and $Reg_{\Sigma} = \{L \subseteq \Sigma^*: L \text{ is regular}\}$. Prove the following results -

- a) Reg_{Σ} is closed under Boolean operations finite union, finite intersection, complementation with respect to Σ^* .
- b) Reg_{Σ} is closed under concatenation, Kleene-star, and reversal.

Exercise 8. Consider the language $L = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$ and prove that the following grammars are sound but not complete.

i. $S \rightarrow S01S \mid S10S \mid \varepsilon$,

ii. $S \rightarrow 0S1 | 1S0 | 01S | S01 | S10 | \varepsilon$.

Exercise 9. Give a CSG for the language $L = \{x = ww: w \in \{a, b\}^*\}$.

Exercise 10. Give a CFG for the language $L = \{x \neq ww : w \in \{a, b\}^*\}$. Note that the complement of L is not a CFL.