Formal Language and Automata Theory (CS21004)

Tutorial - IV

Class: CSE 2^{nd} Year

 $Date: 1^{st}$ February, 2010

Exercise 1. Consider the language $L = \{x \in \{a, b\}^* : x = x^R\}$, give three grammars for the language, one of them must have non-context-free production rule.

Exercise 2. Give context-free grammars for the following languages:

- i. $L_1 = \{a^i b^j a^k : i, j, k > 0 \text{ and } j \ge i + k\},\$
- ii. $L_2 = \{a^p b^q a^r b^s : p, q, r, s \ge 0, p > q \text{ and } r < s\},\$

Exercise 3. Let L_{31} and L_{32} be two CFLs over the alphabet Σ , specified by the CFGs G_{31} and G_{32} . Justify the following claims.

- a) $L_{31} \cup L_{32}$ is a CFL,
- b) $L_{31}L_{32}$ is a CFL,
- c) $(L_{31})^*$ is a CFL,
- d) If $h: \Sigma \to \Gamma^*$ be a mapping, then $h(L_{31})$ is a CFL.

Exercise 4. Design DFA for the following languages over the alphabet $\Sigma = \{0, 1, 2\}$:

- a) $L_{4a} = \{x \in \{0, 1, 2\}^*: x \text{ has odd number of substrings } 210\},\$
- b) $L_{4b} = \{x \in \{0, 1, 2\}^*: x \text{ does not have any substring } 210\},\$
- c) $L_{4c} = \{x \in \{0, 1, 2\}^*: x \text{ either has the substring } 01 \text{ or has the substring } 021\}.$