Formal Language and Automata Theory (CS21004)

Tutorial - II

Class: CSE 2^{nd} Year

Date: 12th January, 2010

Exercise 1. Give a bijection from $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$.

Exercise 2. Neil Calkin and Herbert Wilf¹, following the work of Moritz Abraham Stern and Achille Brocot², have given an enumeration without duplication of rationals in their lowest terms. Calkin-Wilf's construction is an infinite binary tree where each node is labelled by a rational $\frac{i}{j}$ so that the gcd(i, j) = 1.

The root of the tree is labelled by $\frac{1}{1}$, if a node is labelled by $\frac{i}{j}$, then its left-child is labelled by $\frac{i}{i+j}$ and the right-child is labelled by $\frac{i+j}{j}$.

Prove the following facts about the construction.

- i. Every fraction $\frac{i}{i}$ in is in its lowest terms.
- ii. Every fraction $\frac{i}{i} > 0$ and in its lowest terms, will appear in the tree.
- iii. No reduced fraction $\frac{i}{i}$ can appear more than once in the tree.
- iv. The denominator of the n^{th} fraction (in the breadth-first order) is same as the numerator of the $(n+1)^{\text{th}}$ fraction. We call $\frac{1}{1}$ as the 0^{th} fraction.
- v. The numerators of the Calkin-Wilf's sequence of fractions give the following sequence of integers:

 $\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{1}, \frac{1}{4}, \frac{4}{3}, \frac{3}{5}, \frac{5}{2}, \frac{2}{5}, \frac{5}{3}, \frac{3}{4}, \cdots \cdots \ \Longrightarrow \ 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, \cdots \cdots$

Give a recurrence relation for the sequence, i.e. f(0) = 1, f(2n + 1) = ? (left-child) and f(2n+2) = ?, for all $n \ge 0$.

vi. How do you construct the n^{th} fraction from the sequence?

Exercise 3. Consider the language $L_1 = \{\varepsilon, a, aa, aaa, \dots\}$. We can give an inductive definition of the set L_1 as follows:

- i. Basis: $\varepsilon \in L_1$,
- ii. Induction: If $x \in L_1$, then so is ax,
- iii. Nothing else is in L_1 . In other words, L_1 is the smallest set satisfying (i) and (ii).

Take another example, $L_2 = \{ab, aabb, aaabbb, \dots\}$, we define L_2 as follows:

i. Basis: $ab \in L_1$,

2. 1858, 1861

^{1.} Recounting the Rationals, N. Calkin & H. Wilf, American Mathematical Monthly, 107, (2000), 360-363. Department of Mathematics, University of Pennsylvania.

- ii. Induction: If $x \in L_1$, then so is a x b,
- iii. Nothing else is in L_1 .

Give similar definitions for the following languages.

- a) $L_3 = \{x \in \{a, b\}^{\star}: |x|_a \text{ is even}\}.$
- b) $L_4 = \{x \in \{a, b\}^\star : |x|_a = |x|_b\}.$
- c) $L_5 = \{x \in \{a, b\}^* : |x|_a \text{ is odd and } |x|_b \text{ is even } \}.$

Exercise 4. Prove or disprove the following results:

- i. $(L_1L_2)^R = L_2^R L_1^R$.
- ii. $(L^{\star})^{R} = (L^{R})^{\star}$.
- iii. $(L_1 \setminus L_2)^R = L_2^R / L_1^R$, reverse of the *right quotient* of L_1 with respect to L_2 is equal to the *left quotient* of the reverse of L_1 with respect to the reverse of L_2 .

Exercise 5. Prove that the following grammar describes the language $L_5 = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$: $G = (\{S\}, \{a, b\}, P, S)$, where $P: S \to \varepsilon, S \to aSb, S \to bSa, S \to SS$.