Formal Language and Automata Theory (CS2 1 004)

Tutorial - II

Class: CSE 2

nd Year *Date*: 12th January, 2010

Exercise 1. Give a bijection from $N \times N \rightarrow N$, where $N = \{0, 1, 2, 3, 4, \dots\}$.

Exercise 2 . Neil Calkin and Herbert Wilf 1 , following the work of Moritz Abraham Stern and Achille Brocot 2 , have given an enumeration without duplication of rationals in their lowest terms. Calkin-Wilf's construction is an infinite binary tree where each node is labelled by a rational $\frac{i}{i}$ $rac{i}{j}$ so that the $gcd(i, j) = 1$.

The root of the tree is labelled by $\frac{1}{1}$ $\frac{1}{1}$, if a node is labelled by $\frac{i}{j}$ $\frac{i}{j}$, then its left-child is labelled by i $\frac{i}{i+j}$ and the right-child is labelled by $\frac{i+j}{j}$ j .

Prove the following facts about the construction.

- i. Every fraction $\frac{i}{i}$ $\frac{i}{j}$ in is in its lowest terms.
- ii. Every fraction $\frac{i}{i}$ $\frac{i}{j}$ > 0 and in its lowest terms, will appear in the tree.
- iii. No reduced fraction $\frac{i}{4}$ $\frac{i}{j}$ can appear more than once in the tree.
- iv. The denominator of the nth fraction (in the breadth-first order) is same as the numerator of the $(n+1)$ th fraction. We call $\frac{1}{1}$ $\frac{1}{1}$ as the 0th fraction
- v. The numerators of the Calkin-Wilf's sequence of fractions give the following sequence of integers:

1 1 , 1 2 , 2 1 , 1 3 , 3 2 , 2 3 , 3 1 , 1 4 , 4 3 , 3 5 , 5 2 , 2 5 , 5 3 , 3 $\frac{3}{4}$, \implies 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3,

Give a recurrence relation for the sequence, i.e. $f(0) = 1$, $f(2n + 1) = ?$ (left-child) and $f(2n+2)=?$, for all $n\geqslant 0$.

vi. How do you construct the nth fraction from the sequence?

Exercise 3. Consider the language $L_1 = \{\varepsilon, a, aa, aaa, \dots\}$. We can give an inductive definition of the set L_1 as follows:

- i. *Basis*: $\varepsilon \in L_1$, ,
- ii. *Induction*: If $x \in L_1$, then so is ax ,
- iii. Nothing else is in L_1 . In other words, L_1 is the smallest set satisfying (i) and (ii).

Take another example, $L_2 = \{ab, aabb, aaabbb, \dots\}$, we define L_2 as follows

i. *Basis*: $ab \in L_1$, ,

2. 1858, 1861

^{1.} Recounting the Rationals, N. Calkin & H. Wilf, American Mathematical Monthly, 107, (2000), 360-363. Department of Mathematics, University of Pennsylvania.

- ii. *Induction*: If $x \in L_1$, then so is axb .
- iii. Nothing else is in L_1 . .

Give similar definitions for the following languages.

- a) $L_3 = \{x \in \{a, b\}^* : |x|_a \text{ is even}\}\.$
- b) $L_4 = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$
- c) $L_5 = \{x \in \{a, b\}^* : |x|_a \text{ is odd and } |x|_b \text{ is even } \}.$

Exercise 4. Prove or disprove the following results:

- i. $(L_1L_2)^R = L_2^R L_1^R$
- ii. $(L^*)^R = (L^R)^*$.
- iii. $(L_1 \backslash L_2)^R = L_2^R / L_1^R$, reverse of the *right quotient* of L_1 with respect to L_2 is equal to the *left quotient* of the reverse of L_1 with respect to the reverse of L_2 .

Exercise 5. Prove that the following grammar describes the language $L_5 = \{x \in \{a, b\}^* : |x|_a = |x|_b\}$ $G = (\{S\}, \{a, b\}, P, S)$, where $P: S \rightarrow \varepsilon$, $S \rightarrow aSb$, $S \rightarrow bSa$, $S \rightarrow SS$.