
Formal Language and Automata Theory (CS21 004)
Course Coverage

Class : CSE 2nd Year

4th January, 201 0 ( 2 hours) :
Tutorial-1 +
Alphabet: Σ , Γ , � , string over Σ , Σ 0 = { ε} , Σn = {x : x = a1 a2

� an , ai ∈ Σ , 1 6 i 6 n} , Σ? =⋃
n ∈ N

Σn , Σ+ = Σ ?\ { ε} , ( Σ ? , c o n, ε) is a monoid . Language L over the alphabet Σ is a subset of

Σ ? , L ⊆ Σ
∗
.

The size of Σ ∗ is countab ly infinite , so the collection of all languages over Σ , 2Σ ? ' 2N , is
uncountab ly infinite . So every language cannot have finite description.

5 th January, 201 0 ( 1 hour) :
No set is equinumerous to its power-set (Cantor ) . The proof is by reductio ad absurdum ( reduc-
tion to a contradiction) .

An one to one map from A to 2A is easy to get, a � {a } .
Let A be a set and there is an onto map ( surjection ) f from A to 2A . We consider the set

B = {x ∈ A : x
�
f ( x) ∈ 2A } . As f : A → 2A is a surjection, there is an element a0 ∈ A so that

f ( a0 ) = ∅ ∈ 2A , but then a0

�
f ( a0 ) = ∅ . So, a0 ∈ B , and B is a non-empty subset of A . So, there

is an element a1 ∈ A such that f ( a1 ) = B . Does a1 ∈ f ( a1 ) = B? This leads to contradiction.
If a1 ∈ f ( a1 ) = B , then a1

�
B , if a1

�
f ( a1 ) = B , then a1 ∈ B i. e. a1 ∈ f ( a1 ) = B if and only if

a1

�
f ( a1 ) = B . So there is no surjection possible and the set 2A is more numerous than A .

Decision prob lems from different areas of computing can be mapped to decision problems in
formal language.

• REACHABLE = { < G, s , d > : G is a directed graph and the destination node d is reach-
able from the source node s } .

• PRIME = {n ∈ N : n is a prime} .
• EULERPATH = { < G > : there is an Eulerian walk in the undirected graph G } .
• INVMAT = { < M > : M is an invertible matrix over rationals} .

Let Σ be an alphabet. 2Σ ? is the collection of languages over Σ . We know that both < Σ ? , c o nc,
ε > and < 2Σ ? , c onc, { ε} > are monoids. Let L , L1 , L2 ∈ 2Σ ? , the set operations L1 ∪ L2 , L1 ∩ L2 ,
L1 − L2 are defined as usual.

Concatenation: L1L2 = {x ∈ Σ? : ∃ y ∈ L1 ∃z ∈ L2 so that x = yz } , L0 = { ε } , Ln = LLn− 1 , n > 0 .
Kleene Closure/star: L? =

⋃
n= 0
∞ Ln , L+ =

⋃
n= 1
∞ Ln .

6th January, 201 0 ( 1 hour) :
Right quotient and right derivative : L1 \L2 = {x ∈ Σ ? : ∃ y ∈ L2 ∧ x y ∈ L1 } , ∂yr (L ) = {x ∈ Σ ? :

x y ∈ L } = L \{ y } .
Left quotient and left derivative : L2/L1 = { y ∈ Σ ? : ∃x ∈ L2 ∧ x y ∈ L1 } , ∂xl (L ) = { y ∈ Σ ? : x y ∈

L } = {x } /L .
Reverse or mirror image : εR = ε, ( ax)R = xRa , LR = {xR ∈ Σ ? : x ∈ L } .
Substitution and homomorphism : Let Σ a be an alphabet for each a ∈ Σ and La be a language

over Σ a . The map σ( a) = La for all a ∈ Σ induces a map σ : Σ ? → 2Σ ? so that σ ( ε) = { ε} and
σ ( ax ) = σ( a)σ (x ) [ in other words σ (x y) = σ( x)σ( y) ] . The map σ : Σ ?→ 2Σ ? is called substitution .
It is ε-free if no La has ε in it. A substitution is a homomorphism if | La | = 1 for all a ∈ Σ .

Finite description of languages - phrase structure grammar or type-0 grammar.

1



G = (N, Σ , P , S ) , where

i. N is a finite set of variab les or non-terminals ,

ii . Σ finite set of object language symbols called constants or terminals ,

iii . S ∈ N is a special symbol called the start symbol or axiom ,

iv. P is a finite subset of ( (N ∪ Σ) ?N(N ∪ Σ) ? × (N ∪ Σ) ?) called the production or transforma-
tion or rewriting rules.

An element (α , β) ∈ P is such that α = uAv , where u, v , β ∈ (N ∪ Σ) ? and A ∈ N , there must be
a non-terminal in the first component of a production rule. The ordered pair of the production
rule is written as α→ β .

1 1 th January, 201 0 ( 2 hour) :

i. Phrase-Structure Grammar (PSG) : as defined earlier. This is also called a unrestricted
grammar or type-0 grammar .

ii . Context-Sensitive Grammar (CSG): Each production rule is of the αAβ→ αuβ, where
α , β ∈ (N ∪ Σ) ? , A ∈ N , u ∈ (N ∪ Σ) + i. e. one non-terminal from the left-side of the

production rule will be replaced by a non-null string to form the right side of the produc-
tion. This is also called a type- 1 grammar .

iii . Length Increasing Grammar (LIG) : In each production rule the length of the right side
string is not shorter than the length of the left side string i. e. if u→ v ∈ P , | u | 6 | v | .

It is clear that any context- sensitive grammar is a length- increasing grammar . But it
can also be proved that for every length- increasing grammar there is an equivalent
context- sensitive grammar .

iv. Context-Free Grammar: Each production rule is of the form A → α , where A ∈ N and
α ∈ (N ∪ Σ) ? . Replacement of a non-terminal does not depends on the context. This is
also called a type-2 grammar .

v. Right- linear Grammar: Each production rule is either of the following two forms, A→ xB
or A→ x , where A ∈ N and x ∈ Σ ? . Without loss of power we can take x ∈ Σ ∪ { ε} . This
is also called a type-3 grammar or regular grammar .

G iven a grammar G = (N, Σ , P , S ) , we define the binary relation ‘ one step derivation ’ ( ⇒ ) on
the set (N ∪ Σ) ? . If αuβ and αvβ are two strings of (N ∪ Σ) ? and u→ v ∈ P , we say that αuβ
derives or produces αvβ in the grammar G in one step, and write αuβ ⇒G αvβ . We shall drop G
from ⇒ if there is no scope of confusion.
The reflexive- transitive closure of ‘ one step derivation ’ relation gives the notion of derivation in
any finite number of steps ( including 0) , ⇒? . We shall often drop the ‘ ? ’ and abuse the notation
⇒ for both.
Sentential form and sentence : Given a grammar G , any string that can be derived from the
start symbol S in finite number of states is a sentential for, S⇒? u, u is a sentential form. It is a
sentence if it is a string of Σ ? .
Language : G iven a grammar G = (N, Σ , P , S ) , the language generated by the grammar or lan-
guage described by the grammar is the collection of all sentences. L (G) = { x ∈ Σ ? : S ⇒? x } . The
language of a context- sensitive grammar (CSG) is called a context-sensitive language (CSL) , the
language of a length- increasing grammar (LIG) is also a CSL ( as the grammars are equivalent) .
The language of a context-free grammar (CFG) is called a context-free language (CFL) . The lan-
guage of a right- linear grammar is called a regular set or a regular language .

Example 1 . Following is a length-increasing grammar for the language L = { anb2ncn : n > 1 }
G1 = ( {S , B } , {a , b , c} , P , S) , the production rules are,



S → aSBBc
S → a b b c
cB → Bc
bB → b b

The grammar is not context-sensitive due to presence of the rule cB → Bc. We replace it by
three context-sensitive rules and get the context-sensitive grammar of the same language. In
doing so we first replace the terminal ‘ c’ by a new non-terminal D .

S → aSBBD
S → a b bD

DB→ DE
DE→ BE
BE→ BD
bB→ b b
D→ c

Following is a context-free grammar for the language L = {x ∈ Σ ? : | x | a = | x | b} .
G2 = ( {S } , { a , b } , P , S ) , the production rules are

S → aSb
S→ bSa
S→ SS
S→ ε

Following is a right-linear grammar, what is the language?
G3 = ( {S , A } , { a , b } , P , S) , the production rules are

S→ aA
S→ bS
S→ ε
A→ aS
A→ bA

1 2 th January, 201 0 ( 1 hour) : Tutorial II

1 3th January, 201 0 ( 1 hour) : We first prove that for every length-increasing grammar G
there is a context-sensitive grammar G ′ , so that they are equivalent i. e. L(G) = L(G ′) . Without
any loss of generality we take the rules of LIG in any one of the following form:

A→ a
A1A2

� � Am→ B1B2
� � Bn

, where A, A1 , � , Am , B1 , � , Bn ∈ N
and x ∈ Σ , and m 6 n. We have replaced every terminal ‘ a ’ from the productions by new non-
terminal A ′ and add a production A ′→ a .

Example 2 . Consider the grammar G1 = ( {S , B } , { a , b , c} , P , S ) , where the production rule P
is

S → aSBBc
S → a b b c
cB → Bc
bB → b b

The transformed grammar is G1
′ = ( {S , B , A ′ , B ′ , C ′} , { a , b , c} , P ′ , S ) , where the production

rules are
S→ A ′ SBBC
S→ A ′ B ′ B ′C ′

C ′B→ BC ′

B ′ B→ B ′ B ′

A ′→ a
B ′→ b
C ′→ c



The rules of first type and the second type rule with m = 1 are context-sensitive rules. So
we are interested about the second type of rule where m > 2 . We replace
A1A2

� � Am→ B1B2
� � Bn by the following set of 2m rules,
A1A2

� � Am→ C1A2
� � Am

C1A2
� � Am→ C1C2

� � Am
�

C1A2
� � Am− 1Am→ C1C2

� � Cm− 1Am
C1A2

� � Cm− 1Am→ C1C2
� � Cm− 1CmBm+ 1

� Bn
C1C2

� � Cm− 1CmBm+ 1
� Bn→ B1C2

� � Cm− 1CmBm+ 1
� Bn

B1C2
� � Cm− 1CmBm+ 1

� Bn→ B1B2
� � Cm− 1CmBm+ 1

� Bn
�

B1B2
� � Bm− 1CmBm+ 1

� Bn→ B1B2
� � Bm− 1BmBm+ 1

� Bn
All these rules are context-sensitive in nature.
Soundness and Completeness : Given a language L and a grammar G we have to establish

that L = L (G) . There are two parts of the process - we have to prove that the grammar does
not generate any string outside L i. e. L (G) ⊆ L - the grammar is sound . Every string of the lan-
guage is generated by the grammar, L ⊆ L (G) - the grammar is complete .

1 8 th January, 201 0 ( 2 hour) : No class due to Death of Jyoti Basu.

1 9 th January, 201 0 ( 1 hour) : Rooted tree, Parse or derivation tree. Ambiguously derived
string and ambiguous grammar. Inherently ambiguous language. Simplification of a CFG -
removal of useless symbol.

25 th January, 201 0 ( 2 hour) : 1 hour tutorial +
Elimination of ε-production and elimination of unit-production. Deterministic finite auto-

maton (DFA) - M = (Q , Σ , δ , s , F) , state transition function δ : Q × Σ → Q , state transition dia-
gram, state transition table, δ̂ : Q × Σ ? → Q , string accepted by M , language of M ,
L (M ) = {x ∈ Σ? : δ̂ ( s , x ) ∈ F } .

25 th January, 201 0 ( 1 . 5 hour) ( compensation for 1 8 th) : Examples of DFA, Non-determin-
istic finite automaton (NFA) - N = (Q , Σ , δ , s , F) , state transition function δ : Q × Σ → 2Q , δ̂ :
Q × Σ ?→ 2Q , δ(P, a) , where P ⊆ Q . Equivalence of DFA and NFA - subset construction.

27 th January, 201 0 (1 hour): Subset construction, NFA with ε-transition and its equi-
valence with NFA without ε-transition ( not done properly) .

1 st February, 201 0 ( 2 hour) : 1 hour tutorial +
NFA with ε-transition, equivalence of NFA with ε-transition and NFA without ε-transition,

regular expression and its language.

2 nd February, 201 0 (1 hour): ε-NFA from regular expression, Lx , derivative of L with
respect to x , if L is regular then so is Lx . Unique solution of X = AX+ B when ε

�
A , X = A?B .

Regular expression from DFA - solution of simultaneous set equations.

3 rd February, 201 0 (1 hour): Regular expression from DFA using state equations.
Closure properties.

8th February, 201 0 ( 2 hour) : 1 hour tutorial +
Closure properties of regular languages: closure under boolean operations, concatenation,

Kleene-star, reversal, homomorphism, inverse homomorphism.

9th February, 201 0 ( 1 hour) : Closure properties, pumping theorem - proving a language
non-regular, decidability results.



1 0th February, 201 0 ( 1 hour) : Myhill-Nerode Theorem - identification of regular lan-
guages as union of equivalence classes of a right invariant equivalence relation of finite index.
Regular language - a countable boolean algebra. Given a finite state transition diagram with k

states on an alphabet Σ , we can define 2 k DFAs ( set of final states may be any subset of k
states) . These 2 k languages forms a boolean algebra.

1 5 th February, 201 0 ( 2 hour) : 1 hour tutorial +
Minimisation of DFA, Minimisation algorithm and equivalence of two DFAs, Finite Auto-

mata with output - Moore and Mealy machine.

1 6th February, 201 0 ( 1 hour) - ??? - definition of a PDA

2nd March, 201 0 ( 1 hour) - Definition of a PDA - acceptance of a string by empty stack
of a PDA M , the language N(M ) , acceptance of a string at a final state by a PDA M , the lan-
guage T(M ) . A language L = N(M1 ) for a PDA M1 if and only if L = T(M2 ) for some PDA M2 .
The equivalence is not true in case of DPDA. Every CFL L is accepted by a PDA M - one state
PDA simulates left-most derivation.

3rd March, 201 0 ( 1 hour) - Any regular set L is accepted by a DPDA in final state. The
regular language { 0} ? is accepted by a DPDA in final state, but is not accepted by a DPDA in
empty stack. If L = N(M1 ) for a DPDA, then there is a DPDA M2 so that L = T(M2 ) . But the
reverse is not true. If a language is accepted by a PDA, then it is a CFL - example from the
PDA of { anbn : n > 1 } .

8th March, 201 0 ( 2 hour) : 1 hour tutorial +
Pumping Lemma for CFL, {anbncn : n > 1 } is not a CFL, substitution of a language, the col-

lection of context free language is closed under substitution, finite union, concatenation, Kleene
closure and homomorphism, the collection of CFL is not closed under intersection.

9th March, 201 0 ( 1 hour) : Closure under substitution, ( ? )

1 0th March, 201 0 ( 1 hour) : The class of context-free languages is closed under inverse
homomorphism. Decision problems of context-free languages - language is empty, language is
finite, language is infinite, x ∈ L (G) - CYK algorithm.

1 5 th March, 201 0 ( 2 hour) : 1 hour tutorial +
Intersection of a CFL and a regular language is a CFL, Turing machine - as an acceptor, as a

computor and as a enumerator.

1 6th March, 201 0 ( 1 hour) : Turing machine - formal description.
If L is a CFL over the alphabet {a } ? , the L is regular.
Proof: If L is finite then L is regular. So we assume that L is infinite and the CFL pumping

constant is k . We partition L = L1 ∪ L2 , where L1 = {x ∈ L : | x | < k } and L2 = {x ∈ L : | x | > k } .
L1 being finite is regular. We shall prove that L2 is also regular.

Let w ∈ L and | w | > k , so by the pumping lemma we can write w = uvxyz , such that

i. | vy | > 0 ,

ii . | vx y | 6 k ,
iii . for all i > 0 , uv ixyiz ∈ L

The monoid { a } ? is commutative so ( iii) implies that for all i > 0 , ux z ( vy) i ∈ L . If | vy | = p, then

for all i > 0 ux zvy ( vy) i = w ( ap) i ∈ L . Let α = k ! , so ( aα )m = ( aj)
m × k !

j = ( aj)m× β , where β =
k !

j
.

So, w ∈ L and | w | > k implies that for all i > 0 , w ( ap) i ∈ L implies that for all m > 0 , w ( aα )m ∈ L .



We see that each w ∈ L and | w | > k is an element of the set ak+ i( aα ) ? , for some i, 0 6 i < α ,
i . e. L2 ⊆

⋃
06 i < α

ak+ i( aα ) ? . Let wi be the least element of the set L ∩ ak+ i( aα ) ? , so for all m > 0

wi( a
α )m ∈ L and each such element belongs to ak+ i( aα ) ? as wi = ak+ i( aα )mi . So all these ele-

ments starting from wi can be represented by the regular expression wi( aα ) ? .
We also claim that for some i , 0 6 i < α , there is no other element in ak+ i( aα ) ? belonging to

L . If there is some such element wi′ = ak+ i( aα ) l i , then | li | > |mi | as wi is the least element. Let
| li | − |mi | = d , so wi′ = ak+ i( aα )mi+ d = wi( a

α ) d belonging to the chain of wi .
So we conclude that wi( a

α ) ? = L ∩ ak+ i( aα ) ? and L2 = (w0 + w1 + � + wα− 1 ) ( aα ) ? is a reg-
ular language.

1 7th March, 201 0 ( 1 hour) : Design of DTM, remembering information in a state - a state
may be an n-tuple e. g. ( q , a) and ( q , b) , a tape symbol may be an n-tuple and one component
may be modified e. g. ( a , b , a) is changed to ( a , b , b) . Equivalence of singly-infinite tape and
doubly-infinite tape Turing machine.

22nd March, 201 0 ( 2 hour) : 1 hour tutorial +
Equivalence of singly-infinite DTM and doubly-infinite DTM. Parikh’ s theorem -

23rd March, 201 0 ( 1 hour) : Multi-tape DTM, non-deterministic Turing machine, their
equivalence with DTM. A Recursively enumerable and recursive languages.

24th March, 201 0 ( 1 hour) : A language is Turing recognisable if and only if it is gener-
ated by a unrestricted grammar.

29th March, 201 0 ( 2 hour) : 1 hour tutorial +
Continuation of equivalence of Turing machine and unrestricted grammar. The collection of

recursive sets is a countable Boolean algebra. Any DTM over the Σ = { 0 , 1 } can be simulated by
a DTM with tape symbols Γ = { 0 , 1 , t} , where t is the blank symbol.

30th March, 201 0 ( 1 hour) : Encoding of a DTM over { 0 , 1 } and with tape symbols { 0 , 1 ,
t} . A DTM may be viewed as a binary numeral of a natural number. Binary representation of
every natural number do not encode a DTM. We define such a numeral as a code of a DTM
recognising a null set .

Let M1 , M2 , � be an enumeration of DTM where Mi is the binary representation of i . Let
x1 , x2 , � be the enumerations of strings over { 0 , 1 } . We define the diagonal language Ld = {x i :
Mi does not accepts xi } .

We claim that Ld is not recursively-enumerable. If it is, then there is a DTM Td = Ti that
recognises Ld . But that leads to contradiction as Ti recognises xi if and only if Ti does not
recognises x i . So Ld is not Turing recognisable or recursively-enumerable.

There is a Universal Turing Machine that take the encoding of a DTM < M > ( including
itself) an input x to M as input and simulates the behaviour of M on x . Let the language
recognised by U is Lu = { < M, x > : M is a DTM accepts x } .

We claim that Ld = {x i : Mi accepts x i } is recursive ly enumerab le but not recursive . It is not
recursive as that makes Ld recursive. But we know that Ld is not even recursively enumerable.
Following machine recognises Ld .

Md :
Input: x

1 . Enumerate strings over { 0 , 1 } , x1 , x2 , � and compare each enumerated string with x .
Stop, if they are equal. Let x = x j .

2 . Consider the binary representation of j , < j > . If it is not a valid encoding of DTM,
reject x. Any invalid binary string represents a DTM whose language is empty, so it does
not accept x = xj .

3 . If < j > is a valid machine, run the universal machine U on input < Mj , x j > .

4. If U reaches the final state i. e. Mj reaches the final state on xj , then accept x .



5. If U reaches a non-final state and halts, then let Md also halt at a non-final state and
reject x .

6 . If the simulation goes in an infinite loop, Md also does the same.

It is clear that the language recognised by Md is Ld .
The language Lu of a Universal TM is certainly recursively-enumerable. But it cannot be

recursive as a decider for Lu makes a decider for Ld ( in the construction of Md , we shall
replace the U by this decider) and that will make Ld also recursive. But we have already proved
otherwise. This is called problem reduction - we reduce the decision-problem of Ld to
the decision-problem of Lu. As Ld is known to be undecidable, then so is Lu .

Again the language Lu = { < M, x > : M does not accept x } cannot be recursively-enumerable
as that will make both Lu and Lu recursive. So we have two languages and their complements -
Ld and Lu - recursively-enumerable, and Ld and Lu are not even recursively-enumerable.

Problem reduction is a method of converting a decision-problem of a language A , to the
decision-problem of a language B , so that a solution to the decision-problem of B results a solu-
tion to the decision-problem of A . As an example consider the construction of the previous
machine Md . In a sense it reduces the decision-problem of Ld (A) to the decision-problem of
Lu (B) .

31 st March, 201 0 ( 1 hour) :


