Formal Language and Automata Theory (CS21004)

Course Coverage

Class: CSE 24 Year

4*h January, 2010 (2 hours):
Tutorial-1 +
Alphabet: ¥, T, -+, string over X, Y= {c}, X" = {x: 2 = ajaz --an, a; € X, 1 <i < n}, ¥ =

U xr, Tt =3*\{e}, (X% con,e) is a monoid. Language L over the alphabet 3 is a subset of

neN
S LCy

The size of * is countably infinite, so the collection of all languages over 3, 2%" ~ 2N g
uncountably infinite. So every language cannot have finite description.

5t8 January, 2010 (1 hour):

No set is equinumerous to its power-set (Cantor). The proof is by reductio ad absurdum (reduc-
tion to a contradiction).

An one to one map from A to 24 is easy to get, ar {a}.

Let A be a set and there is an onto map (surjection) f from A to 24. We consider the set
B={xcAx¢ f(x) € 24}. As f: A— 24 is a surjection, there is an element ag € A so that
f(ag) =0 €24, but then ag¢ f(ao) =0. So, ap € B, and B is a non-empty subset of A. So, there
is an element a; € A such that f(a;) = B. Does a; € f(a1) = B? This leads to contradiction.

If a1 € f(a1) = B, then a1 ¢ B, if a1 ¢ f(a1) = B, then a; € B ie. a; € f(a1) = B if and only if
a1¢ f(a1) = B. So there is no surjection possible and the set 24 is more numerous than A.

Decision problems from different areas of computing can be mapped to decision problems in
formal language.

e REACHABLE = { <@, s,d>: G is a directed graph and the destination node d is reach-
able from the source node s}.

e PRIME = {n € N:nisaprime}.
e EULERPATH = { < G >: there is an Eulerian walk in the undirected graph G}.
e INVMAT = { <M >: M is an invertible matrix over rationals}.

Let ¥ be an alphabet. 2%"is the collection of languages over ¥. We know that both < ¥*, conc,
e> and <2% conc, {e} > are monoids. Let L, Ly, Lo € 2" the set operations L; U Ly, L1 N Lo,
L1 — Lo are defined as usual.
Concatenation: LiLo={z €¥X*: 3y € L1I2 € Ly sothatz=yz}, L°={e}, L"=LL""1, n>0.
Kleene Closure/star: L*= J > L", LT=J_, L™

n=1

68 January, 2010 (1 hour):

Right quotient and right derivative: Li1\Ls = {x € ¥*: Jy € Ly AN xy € L1}, 9y(L) = {x € ¥*:
ryeL}=I\{y}

Left quotient and left derivative: Lo/L1={y € X*: 3z € Ly Axy € L1}, OL(L) ={y e X" zy €
L}={z}/L.

Reverse or mirror image: e =¢, (ax)f=alla, LF={zFeX*zecL}.

Substitution and homomorphism: Let ¥, be an alphabet for each a € ¥ and L, be a language
over 3,. The map o(a) = L, for all a € ¥ induces a map o: ¥* — 2* so that o(¢) = {¢} and
o(az)=o(a)o(x) [in other words o(xy) =0 (x)o(y)]. The map o:%* — 2% is called substitution.
It is e-free if no L, has € in it. A substitution is a homomorphism if |L,|=1 for all a € ¥.

Finite description of languages - phrase structure grammar or type-0 grammar.



G=(N,%,P,S), where

i. N is a finite set of wvariables or non-terminals,

ii. ¥ finite set of object language symbols called constants or terminals,
iii. S € N is a special symbol called the start symbol or aziom,

iv. P isafinitesubsetof (N UX)*N(NUX)* x (N UX)*) called the production or transforma-
tion or rewriting rules.

An element (o, §) € P is such that « = uAv, where u,v, 3 € (NUX)* and A € N, there must be
a non-terminal in the first component of a production rule. The ordered pair of the production
rule is written as a— f.

11*" January, 2010 (2 hour):

i. Phrase-Structure Grammar (PSG): as defined earlier. This is also called a unrestricted
grammar or type-0 grammar.

ii. Context-Sensitive Grammar (CSG): Each production rule is of the a A3 — au, where
a,BE(NUX)*, Ae N, ue (NUX)" ie. one non-terminal from the left-side of the
production rule will be replaced by a non-null string to form the right side of the produc-
tion. This is also called a type-1 grammar.

iii. Length Increasing Grammar (LIG): In each production rule the length of the right side
string is not shorter than the length of the left side string i.e. if u—v € P, |u| < |v|.
It is clear that any context-sensitive grammar is a length-increasing grammar. But it
can also be proved that for every length-increasing grammar there is an equivalent
context-sensitive grammar.

iv. Context-Free Grammar: Each production rule is of the form A — «, where A € N and
a € (N U X)*. Replacement of a non-terminal does not depends on the context. This is
also called a type-2 grammar.

v. Right-linear Grammar: Each production rule is either of the following two forms, A — x B
or A— x, where A€ N and z € ¥*. Without loss of power we can take x € ¥ U {¢}. This
is also called a type-3 grammar or reqular grammar.

Given a grammar G = (N, X, P, S),we define the binary relation ‘one step derivation’ (=) on
the set (N UX)* If auf and avf are two strings of (N UX)* and u — v € P, we say that auf
derives or produces avf in the grammar G in one step, and write auf =av3. We shall drop G
from = if there is no scope of confusion.

The reflexive-transitive closure of ‘one step derivation’ relation gives the notion of derivation in
any finite number of steps (including 0), = We shall often drop the ‘ x’ and abuse the notation
= for both.

Sentential form and sentence: Given a grammar G, any string that can be derived from the
start symbol S in finite number of states is a sentential for, S:*>u, u is a sentential form. It is a
sentence if it is a string of X*.

Language: Given a grammar G = (N, X, P, S), the language generated by the grammar or lan-
guage described by the grammar is the collection of all sentences. L(G) ={z € £*: S :*>x} The
language of a context-sensitive grammar (CSG) is called a context-sensitive language (CSL), the
language of a length-increasing grammar (LIG) is also a CSL (as the grammars are equivalent).
The language of a context-free grammar (CFG) is called a context-free language (CFL). The lan-
guage of a right-linear grammar is called a regular set or a regular language.

Example 1. Following is a length-increasing grammar for the language L = {a"b*"c™:n > 1}
G1=({S,B},{a,b,c}, P,S), the production rules are,



S —aSBBc
S —abbc
cB — Be
bB —bb
The grammar is not context-sensitive due to presence of the rule ¢B — Bc. We replace it by
three context-sensitive rules and get the context-sensitive grammar of the same language. In
doing so we first replace the terminal ‘¢’ by a new non-terminal D.
S —aSBBD
S —abbD
DB—DE
DE — BE
BE— BD
bB—bb
D—c

Following is a context-free grammar for the language L ={x € ¥*: |z|, = |x|s}.
G2=({5},{a,b}, P,S), the production rules are

S —aSh

S—bSa

S—SS

S—e
Following is a right-linear grammar, what is the language?
Gs=({S,A},{a,b}, P,S), the production rules are

S—aA

S—bS

S—e

A—alS

A—bA

12" January, 2010 (1 hour): Tutorial I

13*" January, 2010 (1 hour): We first prove that for every length-increasing grammar G
there is a context-sensitive grammar G’, so that they are equivalent i.e. L(G) = L(G’). Without
any loss of generality we take the rules of LIG in any one of the following form:

ﬁ:%a ...... A, BBy B, where A, Ay, -, Ay, B1, -, B, €N
and x € 3, and m < n. We have replaced every terminal ‘a’ from the productions by new non-
terminal A’ and add a production A’ — a.

Example 2. Consider the grammar G, = ({5, B}, {a, b, ¢}, P, S), where the production rule P
is

S —aSBBc

S —abbc
cB — Bce
bB — bb

The transformed grammar is G| = ({5, B, A, B’, C'},{a, b, c}, P’, S), where the production

rules are
S— A'"SBBC

S—A"B'B'C’
C'B— BC’
B'B— B'B’

A'—a

B’ —b

C'—c



The rules of first type and the second type rule with m = 1 are context-sensitive rules. So
we are interested about the second type of rule where m > 2. We replace
AjAg-eenes A, — B1Bgy - B,, by the following set of 2m rules,
ALAg e Ay — CLAg e Ay,
C1Ag e A,y — C1C e A,y

ChAg e Apy— 1Ay — C1C weeee Copy—1 A,

C1Ag e Cpy— 1 Ay — C1Co e Cry —1Cy By 1 -+ B

C1Cy v Cry—1Cpy By 1 +++Bp — B1C ++ns Cyy —1Cyy By i1 -+ B,
B1Cy-++vs Cry—1Cm Bt 1+ By — B1Bg oo+ Cyy —1Cyy By 1 -+ B

BiBg--ee B —1CmByms1-+-Bp — BBy -eee- By —1BymBpi1++-Bn

All these rules are context-sensitive in nature.

Soundness and Completeness: Given a language L and a grammar G we have to establish
that L = L(G). There are two parts of the process - we have to prove that the grammar does
not generate any string outside L i.e. L(G) C L - the grammar is sound. Every string of the lan-
guage is generated by the grammar, L C L(G) - the grammar is complete.

18" January, 2010 (2 hour): No class due to Death of Jyoti Basu.

19" January, 2010 (1 hour): Rooted tree, Parse or derivation tree. Ambiguously derived
string and ambiguous grammar. Inherently ambiguous language. Simplification of a CFG -
removal of useless symbol.

25" January, 2010 (2 hour): 1 hour tutorial +

Elimination of e-production and elimination of unit-production. Deterministic finite auto-
maton (DFA) - M =(Q, %, 4, s, F), state transition function §: Q x ¥ — @Q, state transition dia-
gram, state transition table, 5 Q x X* — @, string accepted by M, language of M,

LM)={zxeX*i(s,x) € F}.

25" January, 2010 (1.5 hour)(compensation for 18"™): Examples of DFA, Non-determin-
istic finite automaton (NFA) - N = (Q, X, 6, s, I), state transition function J: Q x ¥ — 29, §:
Q x ¥*—29 §(P,a), where P C Q. Equivalence of DFA and NFA - subset construction.

27" January, 2010 (1 hour): Subset construction, NFA with e-transition and its equi-
valence with NFA without e-transition (not done properly).

15t February, 2010 (2 hour): 1 hour tutorial +
NFA with e-transition, equivalence of NFA with e-transition and NFA without e-transition,
regular expression and its language.

274 February, 2010 (1 hour): e-NFA from regular expression, L., derivative of L with
respect to z, if L is regular then so is L. Unique solution of X =AX + B when e¢ A, X = A*B.
Regular expression from DFA - solution of simultaneous set equations.

34 February, 2010 (1 hour): Regular expression from DFA using state equations.
Closure properties.

8th February, 2010 (2 hour): 1 hour tutorial +

Closure properties of regular languages: closure under boolean operations, concatenation,
Kleene-star, reversal, homomorphism, inverse homomorphism.

9th February, 2010 (1 hour): Closure properties, pumping theorem - proving a language
non-regular, decidability results.



10*" February, 2010 (1 hour): Myhill-Nerode Theorem - identification of regular lan-
guages as union of equivalence classes of a right invariant equivalence relation of finite index.
Regular language - a countable boolean algebra. Given a finite state transition diagram with &
states on an alphabet ¥, we can define 2 DFAs (set of final states may be any subset of k
states). These 2* languages forms a boolean algebra.

15" February, 2010 (2 hour): 1 hour tutorial +
Minimisation of DFA, Minimisation algorithm and equivalence of two DFAs, Finite Auto-
mata with output - Moore and Mealy machine.

16" February, 2010 (1 hour) - ??? - definition of a PDA

274 March, 2010 (1 hour) - Definition of a PDA - acceptance of a string by empty stack
of a PDA M, the language N (M), acceptance of a string at a final state by a PDA M, the lan-
guage T(M). A language L= N(M;) for a PDA M, if and only if L =T(Ms) for some PDA M.
The equivalence is not true in case of DPDA. Every CFL L is accepted by a PDA M - one state
PDA simulates left-most derivation.

3*d March, 2010 (1 hour) - Any regular set L is accepted by a DPDA in final state. The
regular language {0}* is accepted by a DPDA in final state, but is not accepted by a DPDA in
empty stack. If L = N(M;) for a DPDA, then there is a DPDA Ms so that L =T(Ms). But the
reverse is not true. If a language is accepted by a PDA, then it is a CFL - example from the
PDA of {a"b™:n>1}.

8th March, 2010 (2 hour): 1 hour tutorial +

Pumping Lemma for CFL, {a"b"c™:n > 1} is not a CFL, substitution of a language, the col-
lection of context free language is closed under substitution, finite union, concatenation, Kleene
closure and homomorphism, the collection of CFL is not closed under intersection.

9th March, 2010 (1 hour): Closure under substitution, (?)

10*" March, 2010 (1 hour): The class of context-free languages is closed under inverse
homomorphism. Decision problems of context-free languages - language is empty, language is
finite, language is infinite, x € L(G) - CYK algorithm.

15th March, 2010 (2 hour): 1 hour tutorial +
Intersection of a CFL and a regular language is a CFL, Turing machine - as an acceptor, as a
computor and as a enumerator.

16*® March, 2010 (1 hour): Turing machine - formal description.

If L is a CFL over the alphabet {a}*, the L is regular.

Proof: If L is finite then L is regular. So we assume that L is infinite and the CFL pumping
constant is k. We partition L =Ly U Ly, where Ly ={z € L: |x| <k} and Lo={zx € L: |x| > k}.
L being finite is regular. We shall prove that Lo is also regular.

Let we€ L and |w| > k, so by the pumping lemma we can write w =wuvzyz, such that

i |vy|>0,
ii. vyl <k,
iii. for all i >0, uvizy’z€ L
The monoid {a}* is commutative so (iii) implies that for all i >0, uxz(vy) € L. If |vy| = p, then
for all i > 0 uzzvy (vy)'=w(aP)’ € L. Let a=k!, so (a*)™ = (aj)%k! = (a?)™*B where 3 = kT'
So, w € L and |w| > k implies that for all i >0, w(a?)* € L implies that for all m >0, w(a®)™ € L.



We see that each w € L and |w| >k is an element of the set a*+%(a®)*, for some i, 0 <i < a,

ie. Lo C |J da¥Ti(a®)*. Let w; be the least element of the set L N a*+i(a®)*, so for all m > 0
0<i<a

w;(a®)™ € L and each such element belongs to a**i(a®)* as w; = a**¥(a®)™:. So all these ele-
ments starting from w; can be represented by the reqular expression w;(a®)*.

We also claim that for some i, 0 <i < o, there is no other element in a**%(a®)* belonging to
L. If there is some such element w; = a**#(a®)", then |l;| > |m;| as w; is the least element. Let
|li| — |mi| =d, so w]=a**+(a®)™iT%=w;(a*)? belonging to the chain of w;.

So we conclude that w;(a®)* = LN a**(a®)* and Ly = (wo + w1 + ... + we_1)(a®)* is a reg-
ular language.

17*F March, 2010 (1 hour): Design of DTM, remembering information in a state - a state
may be an n-tuple e.g. (¢, a) and (¢, b), a tape symbol may be an n-tuple and one component
may be modified e.g. (a, b, a) is changed to (a, b, b). Equivalence of singly-infinite tape and
doubly-infinite tape Turing machine.

2274 March, 2010 (2 hour): 1 hour tutorial +
Equivalence of singly-infinite DTM and doubly-infinite DTM. Parikh’s theorem -

23'4 March, 2010 (1 hour): Multi-tape DTM, non-deterministic Turing machine, their
equivalence with DTM. A Recursively enumerable and recursive languages.

24t March, 2010 (1 hour): A language is Turing recognisable if and only if it is gener-
ated by a unrestricted grammar.

298 March, 2010 (2 hour): 1 hour tutorial +

Continuation of equivalence of Turing machine and unrestricted grammar. The collection of
recursive sets is a countable Boolean algebra. Any DTM over the ¥ ={0, 1} can be simulated by
a DTM with tape symbols I'={0, 1,1}, where U is the blank symbol.

30" March, 2010 (1 hour): Encoding of a DTM over {0, 1} and with tape symbols {0, 1,
U}. A DTM may be viewed as a binary numeral of a natural number. Binary representation of
every natural number do not encode a DTM. We define such a numeral as a code of a DTM
recognising a null set.

Let My, Ms, --- be an enumeration of DTM where M; is the binary representation of 7. Let
Z1, T2, --- be the enumerations of strings over {0, 1}. We define the diagonal language Ly = {z;:
M; does not accepts x; }.

We claim that Ly is not recursively-enumerable. If it is, then there is a DTM Ty = T; that
recognises L4. But that leads to contradiction as 7; recognises x; if and only if 7; does not
recognises x;. So Lg is not Turing recognisable or recursively-enumerable.

There is a Universal Turing Machine that take the encoding of a DTM < M > (including
itself) an input  to M as input and simulates the behaviour of M on x. Let the language
recognised by U is L, ={ < M,z >: M isa DTM accepts z }.

We claim that Ly = {z;: M; accepts x;} is recursively enumerable but not recursive. It is not
recursive as that makes L, recursive. But we know that Ly is not even recursively enumerable.
Following machine recognises L .

My :
Input: =z
1. Enumerate strings over {0, 1}, x1, za, -~ and compare each enumerated string with z.

Stop, if they are equal. Let x =x;.

2. Consider the binary representation of j, < j > . If it is not a valid encoding of DTM,
reject x. Any invalid binary string represents a DTM whose language is empty, so it does
not accept xr =x;.

3. If <j> is a valid machine, run the universal machine U on input < M;,z;>.

4. If U reaches the final state i.e. M, reaches the final state on z;, then accept z.



5. If U reaches a non-final state and halts, then let My also halt at a non-final state and
reject x.

6. If the simulation goes in an infinite loop, My also does the same.

It is clear that the language recognised by My is Lg .

The language L, of a Universal TM is certainly recursively-enumerable. But it cannot be
recursive as a decider for L, makes a decider for Ly (in the construction of My, , we shall
replace the U by this decider) and that will make L, also recursive. But we have already proved
otherwise. This is called problem reduction - we reduce the decision-problem of L; to
the decision-problem of L,. As L, is known to be undecidable, then so is L.

Again the language L, = { < M,z >: M does not accept ¥} cannot be recursively-enumerable
as that will make both L, and L, recursive. So we have two languages and their complements -
Ly and L, - recursively-enumerable, and Ly and L, are not even recursively-enumerable.

Problem reduction is a method of converting a decision-problem of a language A, to the
decision-problem of a language B, so that a solution to the decision-problem of B results a solu-
tion to the decision-problem of A. As an example consider the construction of the previous
machine My . In a sense it reduces the decision-problem of L; (A) to the decision-problem of
L, (B).

315t March, 2010 (1 hour):



