Date FN / AN Time: 2/3 Hrs.	Full Marks No.	of Students
Autumn / Spring Semester, 2009 - 2010	Deptt	Sub No
Yr. B. Tech.(Hons.) / B. Arch. / M. Sc	. Sub. Name	

Instructions : Answer All Questions (5)

- 1. Answer with short justifications (example or counter example, as the case may be), whether the following **claims** are **true** or **false**. No credit will be given for writing only *true* or *false*. Assume that the alphabet is $\Sigma = \{0, 1\}$ unless specified otherwise.
 - (a) $A \subseteq \Sigma^*$ is said to be co-finite if $\Sigma^* A$ is finite.

Claim: The size of $2_{co-finite}^{\Sigma^*} = \{A \subseteq \Sigma^* : A \text{ is } co-finite\}$ is uncountably infinite. **Ans. (false)** Let there be k elements in Σ . Any string over Σ may be viewed as a numeral over radix-(k + 1) number system e.g. $\Sigma = \{a, b, c\} \equiv \{1, 2, 3\}$. So 'aacb' may be viewed as 1132, a radix-4 numeral that is equal to 94 in decimal (ε may be treated as 0).

Any finite subset of Σ^* may be viewed as a finite subset of N and can be encoded as an element of N e.g. $\{3, 11, 5, 0\}$ is encoded as $2^{11} + 2^5 + 2^3 + 2^0 = 2089$. So there is an one-to-one map from $2_{finite}^{\Sigma^*}$ to N and $2_{finite}^{\Sigma^*}$ is countably infinite. But then there is a natural bijection (by definition) from $2_{co-finite}^{\Sigma^*}$ to $2_{finite}^{\Sigma^*}$. So $2_{co-finite}^{\Sigma^*}$ is also countably infinite.

- (b) Claim: Every finite subset of Σ^* is a regular set. Ans. (true) Let the finite language $L = \{x_1, x_2, \dots, x_k\}$. This can be generated by the right-linear grammar $S \to x_1 \mid x_2 \mid \dots \mid x_k$.
- (c) Let $L_{c1} \subseteq L_{c2} \subseteq \Sigma^*$.

Claim: If L_{c1} is not a regular set, then L_{c2} can never be a regular set.

Ans. (false) L_{c2} may be equal to Σ^* which is a regular set. Another example may be - $\{0^n 1^n : n > 0\} \subset \{0^m 1^n : m, n > 0\} \subset (0 + 1)^*$.

(d) Let $L_d = \{1^n : n \le 1000 \text{ and } n \text{ is a prime}\}$. Claim: A DFA accepting L_d may have less than 900 states.

Ans. (false) The last prime less than 1000 is 997 and to detect that the machine should have at least 998 + 1 states. No loop is possible other than the *sink* state.

(e) **Claim:** Every regular set can be accepted by some NFA without ε -transition with no more than two final states.

Ans. (true) We know that an NFA with ε -move can be constructed from a regular expression. Such an NFA may have only one final state. This NFA can be converted to an NFA without ε -move. If ε is not in the language, the new NFA has exactly one final state. But if ε is in the language, the initial state of the NFA is also a final state.

(f) **Claim:** If we restrict the production rules of a CFG to the form $A \to \sigma B$ or $A \to B\sigma$ or $A \to \sigma$, where $\sigma \in \Sigma$ and A, B are non-terminals, then the generated language of the grammar is regular.

Ans. (false) Consider the grammar $G = (\{S, A, B\}, \{0, 1\}, P, S)$, where the production rules are:

 $\begin{array}{rrrr} S & \rightarrow & A0 \mid 1B \mid 0 \mid 1 \mid \varepsilon \\ A & \rightarrow & 0S \\ B & \rightarrow & S1 \end{array}$

The language is $\{x \in \Sigma^* : x = x^R\}$.

- free (non-right-linear) grammar and a context-sensitive (non-context-free) grammar. **Ans. (true)** Right-linear grammar: $S \rightarrow 0S \mid 01$, Context-free grammar: $S \rightarrow 0A1$ and $A \rightarrow 0A \mid \varepsilon$, where S is the start symbol, Context-sensitive grammar: $S \rightarrow 0A$ and $0A \rightarrow 00A \mid 01$.
- (h) Let Inf_Σ = {L ⊆ Σ* : number of strings in L is infinite}.
 Claim: Inf_Σ is closed under union, intersection, and complementation.
 Ans. (false) It is closed under union but not under intersection or complementation.
 Σ* ∈ Inf_Σ, but its complement set is the null set and not in Inf_Σ. [8 × 3]
- 2. Design a DFA for the language $L_2 = \{x \in \{0, 1\}^* : x \text{ is interpreted as a unsigned binary numeral and x mod 5 = 2}\}$. From the DFA of L_2 , design an NFA (without ε -transition) for L_2^R (reverse of L_2). Convert the NFA to a DFA. [6]

Ans. Following (from left to right) is a DFA for L_2 , corresponding NFA for L_2^R and the DFA of L_2^R . It is not necessary to have a separate state q in the original DFA. The state

0 may be the *initial state*.

3. Design a DFA that accepts the language $L_3 = \{x \in \{0,1\}^* : |x|_0 \text{ is even and '00' is a substring of } x \}$. Write down the equations of states and find the regular expression for L_3 . [5]

Ans. The DFA is

The equations are

$$a_1 = 1a_1 + 0b_2$$

$$a_{3} = 1a_{3} + 0b_{3} + \varepsilon$$

$$b_{1} = 1b_{1} + 0a_{2}$$

$$b_{2} = 0a_{3} + 1b_{1}$$

$$b_{3} = 1b_{3} + 0a_{3}$$

From $a_3 = 1a_3 + 0b_3 + \varepsilon$ we get $a_3 = 1^*(0b_3 + \varepsilon) = 1^*0b_3 + 1^*$. Again $b_3 = 1b_3 + 0a_3 = 1b_3 + 0(1^*0b_3 + 1^*) = (1+01^*0)b_3 + 01^*$. So $b_3 = (1+01^*0)^*01^*$. So $a_3 = 1^*0((1+01^*0)^*01^*) + 1^*$. $b_1 = 1b_1 + 0a_2$, so $b_1 = 1^*0a_2$. $a_2 = 0b_3 + 1a_1 = 0(1+01^*0)^*01^* + 1a_1$. $a_1 = 1a_1 + 0b_2 = 1a_1 + 0(0a_3 + 1b_1) = 1a_1 + 00(1^*0((1+01^*0)^*01^*) + 1^*) + 01b_1 = 1a_1 + 00(1^*0((1+01^*0)^*01^*) + 1^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*) + 011^*0(0(1+01^*0)^*01^*) + 011^*) + 011^*$

$$a_1 = (1 + 011^*01)^*00(1^*0((1 + 01^*0)^*01^*) + 1^*) + 011^*00(1 + 01^*0)^*01^*.$$

There may be mistake!

4. Design a CFG for the language $L_4 = \{x_j^R \# \# x_1 \# x_2 \# \cdots \# x_j \# \cdots \# x_k : k \ge 1, 1 \le j \le k, x_i \in \{0,1\}^+$ for $i = 1, \dots, k\}$, x_j^R is the reverse of x_j . Clearly explain the production rules. [5]

Ans. A CFG is $G = (\{S, A, B, D\}, \{0, 1\}, P, S)$, where the production rules are

$$S \rightarrow AB$$

$$A \rightarrow 0A0 \mid 1A1 \mid 0 \# B \# 0 \mid 1 \# B \# 1$$

$$B \rightarrow \# DB \mid \varepsilon$$

$$D \rightarrow 0D \mid 1D \mid 0 \mid 1$$

5. If L_1 and L_2 are regular sets, then $L_1 \setminus L_2 = \{x : \exists y \in L_2 \text{ such that } xy \in L_1\}$ is a regular set.

Given the DFAs of L_1 and L_2 , give a construction of a DFA accepting the language $L_1 \setminus L_2$. Clearly explain the construction and justify your claim [5]

Ans. Let $M_1 = (Q_1, \Sigma, \delta_1, q_{10}, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_{20}, F_2)$ be the DFAs corresponding to the languages L_1 and L_2 respectively. Construct the machine $M' = (Q', \Sigma, \delta', q'_0, F')$ so that $Q' = Q_1 \times Q_2$, $q'_0 = (q_{10}, q_{20})$, $F' = F_1 \times F_2$, and $\delta'((p_1, p_2), a) = (\delta_1(p_1, a), \delta_2(p_2, a))$.

Consider the set $F = \{p \in Q_1 : \text{such that there is a path in } M' \text{ from } (p, q_{20}) \in Q' \text{ to } (f_1, f_2) \in F'\}$. This implies that there is a string $y \in \Sigma^*$, so that $\delta_1(p, y) \in F_1$ in M_1 , and $\delta_2(q_{20}, y) \in F_2$ i.e. $y \in L_2$. So any string $x \in \Sigma^*$ that takes M_1 from q_{10} to p is in $L_1 \setminus L_2$. So the machine for $L_1 \setminus L_2$ is $M = (Q_1, \Sigma, \delta_1, q_{01}, F)$.

Sig.of the Paper-Setter