INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

$Date \dots FN / AN Time: 2/3$ Hrs.	Full Marks	No.	of Students
Autumn / Spring Semester, 20	Deptt		Sub No
Yr. B. Tech.(Hons.) / B. Arch. / M. Sc. Sub. Name			

Instruction : Answer Q1 and any Four(4) from the Remaining Questions.

- 1. Answer with a short justification whether the following **claims** are **true** or **false**. No credit will be given for writing only *true* or *false*. Assume the alphabet $\Sigma = \{0, 1\}$ unless specified otherwise. $\langle A \rangle$ means an encoding of the object A. CFL (CFG): context-free language (grammar), PDA: push-down automaton, r.e.: recursively enumerable, RE_{Σ}: the collection of all r.e. languages over Σ .
 - (a) Claim: A deterministic finite state transition system over Σ with *n* states (the start state is fixed) can accept 2^n different languages for different choices of the set of final states, and these languages form a Boolean algebra.

True: The set Σ^* is partitioned by the DFA $M = (Q, \Sigma, \delta, q_0, F)$ in |Q| = n equivalence classes (Myhill-Nerode), where every state corresponds to an equivalence class - two strings $x, y \in \Sigma^*$ are said to be related (binary relation \equiv_M) if $\delta(q_0, x) = \delta(q_0, y)$. This can be shown to be an equivalence relation. If $F = Q, \Sigma^*$ is accepted, if $F = \emptyset, \emptyset$ is accepted. Let $A, B \subseteq Q, L_A$ or L_B are the languages accepted when F = A or F = B respectively. If $F = A \cup B$, the language accepted is $L_A \cup L_B$, if $F = Q \setminus A$, the language accepted is $\Sigma^* \setminus L_A$. So is the claim.

(b) Claim: There are only finite number of unambiguous CFGs for the language $L = \{0^n 1^n : n \ge 1\}$.

False: There are unambiguous CFG's for every $k = 1, 2, 3, \cdots$. The production rules of the k^{th} CFG (k is fixed) are:

$$S \to 01 \mid 0011 \mid \cdots \mid 0^k 1^k \mid 0^k S1^k.$$

Taking k = 3, the rules are $S \to 01 \mid 0011 \mid 000111 \mid 000S111$.

(c) Let $\mathcal{C} = \{L \subseteq \Sigma^* : L \text{ is co-finite}\}.$

Claim: Each element of C is a CFL and intersections of any two of them is also a CFL.

True: Each language $L \in C$ is co-finite, so it is a regular language, and so it is CFL. If $L_1, L_1 \in C$, then $L_1 \cap L_2$ is also a regular language, and so it is a CFL.

(d) L is a CFL, $x \in L$, and a proper prefix of x is also in L.

Claim: L cannot be accepted by a deterministic push-down automaton (DPDA) in empty stack.

True: Let $x = uv \in L$, $u \in L$ and $v = \varepsilon$. The DPDA will empty the stack while accepting the string u and cannot make any move. But it is suppose to compute on the remaining portion of the string. As it is a DPDA, there is no other choice.

- (e) Claim: If L = {1^p : p is a prime}, then there is no context-sensitive language L' so that LL' is a regular language.
 False: Take L' = {1ⁿ : n ≥ 1}, which is regular and so is context-sensitive. LL' = {1ⁿ : n ≥ 3} is clearly regular.
- (f) Claim: If L is a CFL and x ∈ L is of length greater than or equal to the pumping constant, the number of strings of L is infinite.
 True: Let the pumping constant be k and the string be w. By pumping theorem we can write w = uvxyz, so that |vy| > 0, |vxy| ≤ l, and for each i ≥ 0, uvⁱxyⁱz ∈ L. So the number of strings in the language are infinite.
- (g) Claim: The collection of decidable or recursive languages over Σ is a Boolean algebra with countably infinite number of elements.
 True: Recursive languages cannot supersede countability as they are decided by Turing machines. Both Σ* and Ø are recursive (they are regular). This class is also closed under union, intersection and completation. So is the claim.
- (h) Claim: The length of encoding (using 0, 1) of a deterministic Turing machine over $\{0, 1\}$, with the tape alphabet $\{0, 1, b\}$, and the number of states n, is O(n).

False: We cannot go for binary encoding as 0 is to be used as separator. So

$$Q = \{1, 11, 111, \dots, \overline{111} \dots 1\}$$
 is of length $O(n^2)$.

(i) Claim: Every r.e. language over $\{0,1\}$ is not reducible to $L_{HALT} = \{ < M, w > : M \text{ is a Turing machine that halts on input } x \}$.

False: Every r.e. language is mapping-reducible to L_{HALT} . Let L be a r.e. language recognised by a Turing machine M. We can always modify M is such a way that it halts only when it accepts a string, otherwise it runs forever. Let us call this machine to be M_L . Now the reduction mapping f (Turing computable) is $x \mapsto \langle M_L, x \rangle$. Note that M is known and the Turing machine that computes f modifies it.

It is clear that $x \in L$ if and only if $\langle M_L, x \rangle \in L_{HALT}$.

 $[9 \times 3]$

2. (a) Use pumping theorem to prove that $L = \{0^p 1^q : p + q \text{ is } \underline{not} \text{ a perfect square}\}$ is not a regular language.

Ans. Let $\overline{L} = \{0^{p}1^{q} : p+q \text{ is a perfect square}\}$ is regular and the pumping constant be k. Naturally $0^{k^{2}} \in \overline{L}$ and by pumping theorem we can write $0^{k^{2}} = xyz$ so that (i) |y| > 0, (ii) $|xy| \le k$, (iii) for all $i \ge 0$, $xy^{i}z \in \overline{L}$. Let $y = 0^{l}$, where $l \le k$. Now $xy^{2}z = 0^{k^{2}+l} \in \overline{L}$. But then the next similar string is $0^{(k+1)^{2}} = 0^{k^{2}+2k+1}$. $l \ne 0^{2k+1}$ as $l \le k$. So it is impossible for \overline{L} to be regular. Now, $\overline{L} = (\Sigma^{*} \setminus L) \cap L(0^{*}1^{*})$. Lis regular implies \overline{L} is regular - a contradiction.

(b) Use Myhill-Nerode theorem and other closure properties of regular languages to show that $L = \{0^m 1^n : hcf(m, n) > 1\}$ is not regular. **Ans.** If possible $\overline{L} = \{0^p 1^q : hcf(m, n) = 1\}$ is accepted by the DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$. But we claim that 0^p and 0^q , where p, q are two distinct primes can not be equivalent i.e. $\delta(q_0, 0^p) \neq \delta(q_0, 0^q)$. Otherwise, $0^p 1^q \in \overline{L}$ implies that $0^q 1^q \in \overline{L}$ which is not the case. But then there are infinite number of primes, so it is not possible to have a DFA. $\overline{L} = (\Sigma^* \setminus L) \cap L(0^*1^*)$. If L is regular, then so is \overline{L} - contradiction. So L is not regular.

[6+6]

3. (a) Design a PDA (state transition diagram) that recognises the language L = {x ∈ {0,1}* : x ≠ ww}. \$ is the bottom marker of the stack.
Ans. Design the CFG with the start symbol \$ and use standard construction of one state PDA. The CFG G = ({\$, A, B, D}, {0,1}, P, \$), where profuction rules are

The corresponding PDA is $M = (\{q\}, \{0, 1\}, \{0, 1, \$, A, B, D\}, \delta, q, \$, \emptyset)$. The transition functions are,

i. If $A \to \alpha \in P$, then $(q, \alpha) \in \delta(q, \varepsilon, A)$ e.g. $\delta(q, \varepsilon, A) = \{(q, DAD), (q, 0)\}.$

ii.
$$\delta(q, 0, 0) = \{(q, \varepsilon)\}$$
 and $\delta(q, 1, 1) = \{(q, \varepsilon)\}.$

(b) Use pumping theorem to prove that $L = \{x \in \{0, 1\}^* : x = ww\}$ is not a context-free language.

Ans. Let *L* be context-free and *k* is the pumping constant. We consider the string $1^k 0^k 1^k 0^k \in L$ and argue that pumping is impossible. [7 + 5]

4. (a) Consider the push-down automaton $P = (\{p,q\}, \{a,b,c\}, \{\$,A,B\}, \delta, p, \$, \phi)$ and <u>formally</u> construct an equivalent context-free grammar. The acceptance is by empty-stack. Clearly explain the non-terminals and the production rules.

Ans. The meaningful non-terminals and productions of the grammar are $N = \{S, (p\$q), (pAq), (pBq), (q\$q), (qAq), (qBq)\}$ and

$$S \rightarrow (p\$q)$$

$$(p\$q) \rightarrow a(pAq)(q\$q) | b(pBq)(q\$q) | c(q\$q)$$

$$(pAq) \rightarrow a(pAq)(qAq) | b(pBq)(qAq) | c(qAq)$$

$$(pBq) \rightarrow a(pAq)(qBq) | b(pBq)(qBq) | c(qBq)$$

$$(qAq) \rightarrow b$$

$$(qBq) \rightarrow a$$

$$(q\$q) \rightarrow \varepsilon$$

If we give 'better' names to the non-terminals, we get:

(b) Let L be a prefix closed infinite context-free language. Prove that there is an infinite regular language $L' \subseteq L$.

Ans. Let the pumping constant be k. Consider a string $w \in L$ of length $\geq k$. We can divide the string as w = uvxyz so that (i) $|vxy| \leq k$, (ii) |vy| > 0, and for all $i \geq 0$, $uv^i xy^i z \in L$.

But then the language is prefix-closed, so for all $i \ge 0$, (i) $uv^i \in L$, if $v \ne \varepsilon$, or (ii) $uxy^i \in L$, if $v = \varepsilon$. In the first case the regular subset is uv^* and in the second case the regular subset is uxy^* .

[8+4]

5. (a) Prove that $L_d = \{x_i : \text{the Turing machine } M_i \text{ does not accept } x_i\}$ is not Turing recognisable.

Ans. If L_d is Turing recognisable, there is a Turing machine M_d that recognises L_d . Let the encoding of the Turing machine be the k^{th} string i.e. $\langle M_d \rangle = x_k$ and M_d is M_k in our enumeration.

The question is whether $x_k \in L_d$. If $x_k \in L_d$, then $M_d = M_k$ does not accept x_k i.e. $x_k \notin L_d$. If $x_k \notin L_d$, then $M_d = M_k$ does not accept x_k i.e. $x_k \in L_d$. So, $x_k \in L_d$ if and only if $x_k \notin L_d$ - a contradiction. So L_d is not Turing recognisable.

(b) Prove that $L_{\emptyset} = \{ < M > : M \text{ is a Turing machine and } L(M) = \emptyset \}$ mapping reducible to $L_{=} = \{ < M_1, M_2 > : M_1 \text{ and } M_2 \text{ are equivalent Turing machines} \}$ as well $L_{\neq} = \{ < M_1, M_2 > : M_1 \text{ and } M_2 \text{ are not equivalent Turing machines} \}$. What is your conclusion from this result?

Ans. We construct a Turing machine M_e so that $L(M_e) = \emptyset$. The mapping reduction is $\langle M \rangle \mapsto \langle M, M_e \rangle$. It is clear that $\langle M \rangle \in L_{\emptyset}$ if and only if $\langle M, M_e \rangle \in L_{=}$.

The answer to the remaining portion is not known to me!!

(c) Prove that the universal language $L_u = \{ \langle M, x \rangle : \text{the Turing machine } M \text{ accepts } x \}$ is not mapping reducible to L_{\emptyset} .

Ans. We know that $\overline{L_{\emptyset}}$ is recursively enumerable. Following Turing machine recognises this language.

 $M_{\overline{a}}$:

Input: y

- i. If $y \neq \langle M \rangle$, reject y as such a string by definition encodes a machine whose language is empty,
- ii. for $i = 1, 2, 3, \cdots$ do the following steps
- iii. enumerate $x_1, x_2, \cdots, x_i \in \Sigma^*$
- iv. Simulate $M (\langle M \rangle = y)$ on each of these strings for *i* steps.
- v. If one of the simulation on some x_k comes to accept halt, accept $y = \langle M \rangle$ as $x_k \in L(M) \neq \emptyset$.

If $L_u \leq_m L_{\emptyset}, \overline{L_u} \leq_m \overline{L_{\emptyset}}$. But we know that $\overline{L_{\emptyset}}$ is recursively enumerable. That makes $\overline{L_u}$ recursively enumerable - but that is impossible.

[3+6+3]

- 6. Give proper justification for the following statements.
 - (a) Context-free languages are closed under inverse-homomorphism.

Ans. Let $h: \Sigma_1^* \to \Gamma_2^*$ be a homomorphism and L be a CFL over Σ_2 . The claim is that $h^{-1}(L) \subseteq \Sigma^*$ is a CFL.

Let the PDA $M_2 = (Q_2, \Sigma_2, \Gamma_2, \delta_2, q_{20}, \$, F_2)$ recognises L_2 . The PDA $M_1 =$ $(Q_1, \Sigma_1, \Gamma_1, \delta_1, q_{10}, \$, F_1)$ first translates the input from Σ_1 to its homomorphic image and then runs M_2 on it. So the whole input over Σ_1^* is translated to its image over Σ_2^* and M_2 is run on it. If M_2 accepts, then so is M_1 .

The state set takes care of the translation:

- $Q_1 = Q_2 \times \{x \in \Sigma_2^* : x \text{ is a suffix of } h(a) \text{ for all } a \in \Sigma_1\}$. The second component of the state keeps the translation.
- $q_{10} = (q_{20}, \varepsilon).$
- $\Sigma_1 = \Sigma_2, \Gamma_1 = \Gamma_2.$
- $F_1 = F_2 \times \{\varepsilon\}.$

The translation takes place as follows: $\delta_1((p,\varepsilon), a, X) = \{(p, h(a)), X)\}.$

(b) If L_1 and L_2 are recognised by deterministic Turing machines (DTMs) M_1 and M_2 , then there is a DTM that recognises L_1L_2 .

Ans. The DTM for L_1L_2 works as follows:

M:

Input: x

- i. Split the input x in two parts $x = x_1 x_2$ in all possible ways. If the length of x is n, there are n+1 split.
- ii. for $i = 1, 2, 3, 4, \cdots$ do the following steps.
- iii. Simulate M_1 on the first part, x_1 , and simulate M_2 on the second part x_2 for *i* steps.
- iv. If both the machines accept some split within some i steps, accept x.

(c) Any context-free language over a one-letter alphabet is a regular language.

Ans. If the language *L* is finite, there is nothing to prove.

Consider an infinite language L and let the pumping constant be k. So each w of length $\geq k$ in the language can be written as w = uvxyz so that $|vxy| \leq k$, |vy| > 0and for all $i \geq 0$, $uv^i xy^i z \in L$. As there is only one alphabet, we write the last clause as $uxz(vy)^* \subseteq L$. |vy| = p, so $uxz(a^p)^i \in L$ for all $i \ge 0$. Let $\alpha = k!$, we calim that $w(a^{\alpha})^m \in L$ for all $m \ge 0$, as $\alpha \times m = p \times \frac{m \times \alpha}{p}$. Note that α does not depend on w. So for each word $w \in L$ and $|w| \ge k$, $w(a^{\alpha})^m \in L$, for all $m \ge 0$. We observe that each $w \in L$ and $|w| \ge k$ is an element of $a^{k+i}(a^{\alpha})^*$ where $0 \le i < \alpha$. Consider the least element w_i of $L \cap a^{k+i}(a^{\alpha})^*$. So the language $L = L_1 \cup L_2$, where L_1 is the finite collection of strings of length < k and $L_2 = \bigcup_{0 \le i < \alpha} w_i(a^{\alpha})^*$. So L is regular. $[\mathbf{3} \times \mathbf{4}]$

Sig.of the Paper-Setter