INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Instruction : Answer Q1 and any $Four(4)$ from the Remaining Questions.

- 1. Answer with a short justification whether the following claims are true or false. No credit will be given for writing only *true* or *false*. Assume the alphabet $\Sigma = \{0, 1\}$ unless specified otherwise. $\langle A \rangle$ means an encoding of the object A. CFL (CFG): context-free language (grammar), PDA: push-down automaton, r.e.: recursively enumerable, RE_{Σ} : the collection of all r.e. languages over Σ .
	- (a) Claim: A deterministic finite state transition system over Σ with n states (the start state is fixed) can accept $2ⁿ$ different languages for different choices of the set of final states, and these languages form a Boolean algebra.

True: The set Σ^* is partitioned by the DFA $M = (Q, \Sigma, \delta, q_0, F)$ in $|Q| = n$ equivalence classes (Myhill-Nerode), where every state corresponds to an equivalence class - two strings $x, y \in \Sigma^*$ are said to be related (binary relation \equiv_M) if $\delta(q_0, x) = \delta(q_0, y)$. This can be shown to be an equivalence relation. If $F = Q$, Σ^* is accepted, if $F = \emptyset$, \emptyset is accepted. Let $A, B \subseteq Q$, L_A or L_B are the languages accepted when $F = A$ or $F = B$ respectively. If $F = A \cup B$, the language accepted is $L_A \cup L_B$, if $F = A \cap B$, the language accepted is $L_A \cap L_B$, if $F = Q \setminus A$, the language accepted is $\Sigma^* \setminus L_A$. So is the claim.

(b) Claim: There are only finite number of unambiguous CFGs for the language $L =$ ${0^n 1^n : n \ge 1}.$

False: There are unambiguous CFG's for every $k = 1, 2, 3, \cdots$. The production rules of the k^{th} CFG (k is fixed) are:

$$
S \to 01 \mid 0011 \mid \cdots \mid 0^k 1^k \mid 0^k S 1^k.
$$

Taking $k = 3$, the rulwes are $S \to 01 | 0011 | 000111 | 000S111$.

(c) Let $C = \{L \subseteq \Sigma^* : L \text{ is co-finite}\}.$ Claim: Each element of $\mathcal C$ is a CFL and intersections of any two of them is also a CFL.

True: Each language $L \in \mathcal{C}$ is co-finite, so it is a regular language, and so it is CFL. If $L_1, L_1 \in \mathcal{C}$, then $L_1 \cap L_2$ is also a regular language, and so it is a CFL.

(d) L is a CFL, $x \in L$, and a proper prefix of x is also in L.

Claim: L cannot be accepted by a deterministic push-down automaton (DPDA) in empty stack.

True: Let $x = uv \in L$, $u \in L$ and $v = \varepsilon$. The DPDA will empty the stack while accepting the string u and cannot make any move. But it is suppose to compute on the remaining portion of the string. As it is a DPDA, there is no other choice.

- (e) Claim: If $L = \{1^p : p \text{ is a prime}\},\$ then there is no context-sensitive language L' so that LL' is a regular language. **False:** Take $L' = \{1^n : n \ge 1\}$, which is regular and so is context-sensitive. $LL' = \{1^n : n \geq 3\}$ is clearly regular.
- (f) Claim: If L is a CFL and $x \in L$ is of length greater than or equal to the pumping constant, the number of strings of L is infinite.

True: Let the pumping constant be k and the string be w . By pumping theorem we can write $w = uvxyz$, so that $|vy| > 0$, $|vxy| \leq l$, and for each $i \geq 0$, $uv^ixy^iz \in L$. So the number of strings in the language are infinite.

(g) Claim: The collection of decidable or recursive languages over Σ is a Boolean algebra with countably infinite number of elements.

True: Recursive languages cannot supersede countability as they are decided by Turing machines. Both Σ^* and \emptyset are recursive (they are regular). This class is also closed under union, intersection and completation. So is the claim.

(h) Claim: The length of encoding (using 0, 1) of a deterministic Turing machine over $\{0,1\}$, with the tape alphabet $\{0,1, b\}$, and the number of states n, is $O(n)$.

False: We cannot go for binary encoding as 0 is to be used as separator. So n

$$
Q = \{1, 11, 111, \dots, \overbrace{111 \cdots 1}\}
$$
 is of length $O(n^2)$.

(i) Claim: Every r.e. language over $\{0,1\}$ is not reducible to $L_{HALT} = \{:\}$ M is a Turing machine that halts on input x .

False: Every r.e. language is mapping-reducible to L_{HALT} . Let L be a r.e. language recognised by a Turing machine M . We can always modify M is such a way that it halts only when it accepts a string, otherwise it runs forever. Let us call this machine to be M_L . Now the reduction mapping f (Turing computable) is $x \mapsto M_L, x >$. Note that M is known and the Turing machine that computes f modifies it.

It is clear that $x \in L$ if and only if $\langle M_L, x \rangle \in L_{HALT}$.

 $[9 \times 3]$

2. (a) Use pumping theorem to prove that $L = \{0^p1^q : p+q \text{ is } \underline{\text{not}} \text{ a perfect square} \}$ is not a regular language.

Ans. Let $\overline{L} = \{0^p1^q : p+q \text{ is a perfect square}\}\$ is regular and the pumping constant be k. Naturally $0^{k^2} \in \overline{L}$ and by pumping theorem we can write $0^{k^2} = xyz$ so that (i) $|y| > 0$, (ii) $|xy| \le k$, (iii) for all $i \ge 0$, $xy^i z \in \overline{L}$. Let $y = 0^l$, where $l \le k$. Now $xy^2z = 0^{k^2+1} \in \overline{L}$. But then the next similar string is $0^{(k+1)^2} = 0^{k^2+2k+1}$. $\overline{l} \neq 0^{2k+1}$ as $l \leq k$. So it is impossible for \overline{L} to be regular. Now, $\overline{L} = (\Sigma^* \setminus L) \cap L(0^*1^*)$. L is regular implies \overline{L} is regular - a contradiction.

(b) Use Myhill-Nerode theorem and other closure properties of regular languages to show that $L = \{0^m 1^n : \text{hcf}(m, n) > 1\}$ is not regular. Ans. If possible $\overline{L} = \{0^p1^q : \text{hcf}(m,n) = 1\}$ is accepted by the DFA $M =$ $(Q, \{0, 1\}, \delta, q_0, F).$ But we claim that 0^p and 0^q , where p, q are two distinct primes can not be equivalent i.e. $\delta(q_0, 0^p) \neq \delta(q_0, 0^q)$. Otherwise, $0^p1^q \in \overline{L}$ implies that $0^q1^q \in \overline{L}$ which is

not the case.

But then there are infinite number of primes, so it is not possible to have a DFA. $\overline{L} = (\Sigma^* \setminus L) \cap L(0^*1^*)$. If L is regular, then so is \overline{L} - contradiction. So L is not regular.

 $[6 + 6]$

3. (a) Design a PDA (state transition diagram) that recognises the language $L = \{x \in$ $\{0,1\}^* : x \neq ww\}$. \$ is the bottom marker of the stack. Ans. Design the CFG with the start symbol \$ and use standard construction of one state PDA. The CFG $G = (\{\$, A, B, D\}, \{0, 1\}, P, \$)$, where profuction rules

$$
\begin{array}{rcl}\n\text{\$} & \rightarrow & AB \mid BA \mid A \mid B \\
A & \rightarrow & DAD \mid 0 \\
B & \rightarrow & DBD \mid 1 \\
D & \rightarrow & 0 \mid 1\n\end{array}
$$

The corresponding PDA is $M = (\{q\}, \{0, 1\}, \{0, 1, \$, A, B, D\}, \delta, q, \$,\emptyset)$. The transition functions are,

i. If $A \to \alpha \in P$, then $(q, \alpha) \in \delta(q, \varepsilon, A)$ e.g. $\delta(q, \varepsilon, A) = \{(q, DAD), (q, 0)\}.$

ii.
$$
\delta(q, 0, 0) = \{(q, \varepsilon)\}\
$$
and $\delta(q, 1, 1) = \{(q, \varepsilon)\}.$

(b) Use pumping theorem to prove that $L = \{x \in \{0,1\}^* : x = ww\}$ is not a contextfree language.

Ans. Let L be context-free and k is the pumping constant. We consider the string $1^k0^k1^k0^k \in L$ and argue that pumping is impossible. [7 + 5]

4. (a) Consider the push-down automaton $P = (\{p, q\}, \{a, b, c\}, \{\$\mathcal{F}, A, B\}, \delta, p, \$\mathcal{F}, \phi)$ and formally construct an equivalent context-free grammar. The acceptance is by empty-stack. Clearly explain the non-terminals and the production rules.

are

Ans. The meaningful non-terminals and productions of the grammar are $N =$ $\{S,(p\$\overline{q}),(p\overline{A}q),(p\overline{B}q),(q\$\overline{q}),(q\overline{A}q),(q\overline{B}q)\}\$ and

$$
S \rightarrow (p\$\overline{q})
$$

\n
$$
(p\$\overline{q}) \rightarrow a(pAq)(q\$\overline{q}) | b(pBq)(q\$\overline{q}) | c(q\$\overline{q})
$$

\n
$$
(pAq) \rightarrow a(pAq)(qAq) | b(pBq)(qAq) | c(qAq)
$$

\n
$$
(pBq) \rightarrow a(pAq)(qBq) | b(pBq)(qBq) | c(qBq)
$$

\n
$$
(qAq) \rightarrow b
$$

\n
$$
(qBq) \rightarrow a
$$

\n
$$
(q\$\overline{q}) \rightarrow \varepsilon
$$

If we give 'better' names to the non-terminals, we get:

$$
S \rightarrow S'
$$

\n
$$
S' \rightarrow aAD \mid bBD \mid cD
$$

\n
$$
A \rightarrow aAX \mid bBX \mid cX
$$

\n
$$
B \rightarrow aAY \mid bBY \mid cY
$$

\n
$$
X \rightarrow b
$$

\n
$$
Y \rightarrow a
$$

\n
$$
D \rightarrow \varepsilon
$$

(b) Let L be a prefix closed infinite context-free language. Prove that there is an infinite regular language $L' \subseteq L$.

Ans. Let the pumping constant be k. Consider a string $w \in L$ of length $\geq k$. We can divide the string as $w = uvxyz$ so that (i) $|vxy| \le k$, (ii) $|vy| > 0$, and for all $i \geq 0$, $uv^i xy^i z \in L$.

But then the language is prefix-closed, so for all $i \geq 0$, (i) $uv^{i} \in L$, if $v \neq \varepsilon$, or (ii) $uxy^i \in L$, if $v = \varepsilon$. In the first case the regular subset is uv^* an in the second case the regular subset is uxy∗.

 $[8 + 4]$

5. (a) Prove that $L_d = \{x_i : \text{the Turing machine } M_i \text{ does not accept } x_i\}$ is not Turing recognisable.

Ans. If L_d is Turing recognisable, there is a Turing machine M_d that recognises L_d . Let the encoding of the Turing machine be the k^{th} string i.e. $\langle M_d \rangle = x_k$ and M_d is M_k in our enumeration.

The question is whether $x_k \in L_d$. If $x_k \in L_d$, then $M_d = M_k$ does not accept x_k i.e. $x_k \notin L_d$. If $x_k \notin L_d$, then $M_d = M_k$ does not accept x_k i.e. $x_k \in L_d$. So, $x_k \in L_d$ if and only if $x_k \notin L_d$ - a contradiction. So L_d is not Turing recognisable.

(b) Prove that $L_{\emptyset} = \{ \langle M \rangle : M \text{ is a Turing machine and } L(M) = \emptyset \}$ mapping reducible to $L = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are equivalent Turing machines} \}$ as well $L_{\neq} = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are not equivalent Turing machines} \}.$ What is your conclusion from this result?

Ans. We construct a Turing machine M_e so that $L(M_e) = \emptyset$. The mapping reduction is $\langle M \rangle \rightarrow \langle M, M_e \rangle$. It is clear that $\langle M \rangle \rightarrow \langle L_{\emptyset} \rangle$ if and only if $< M, M_e >\in L_-.$

The answer to the remaining portion is not known to me!!

(c) Prove that the universal language $L_u = \{ \langle M, x \rangle :$ the Turing machine M accepts x is not mapping reducible to L_{\emptyset} .

Ans. We know that $\overline{L_{\emptyset}}$ is recursively enumerable. Following Turing machine recognises this language.

 $M_{\overline{\emptyset}}$:

Input: y

- i. If $y \neq M >$, reject y as such a string by definition encodes a machine whose language is empty,
- ii. for $i = 1, 2, 3, \cdots$ do the following steps
- iii. enumerate $x_1, x_2, \dots, x_i \in \Sigma^*$
- iv. Simulate $M \leq M \geq y$ on each of these strings for *i* steps.
- v. If one of the simulation on some x_k comes to accept halt, accept $y = \langle M \rangle$ as $x_k \in L(M) \neq \emptyset$.

If $L_u \leq_m L_{\emptyset}$, $L_u \leq_m L_{\emptyset}$. But we know that L_{\emptyset} is recursively enumerable. That makes $\overline{L_u}$ recursively enumerable - but that is impossible.

 $[3 + 6 + 3]$

- 6. Give proper justification for the following statements.
	- (a) Context-free languages are closed under inverse-homomorphism.

Ans. Let $h: \Sigma_1^* \to \Gamma_2^*$ be a homomorphism and L be a CFL over Σ_2 . The claim is that $h^{-1}(L) \subseteq \Sigma^*$ is a CFL.

Let the PDA $M_2 = (Q_2, \Sigma_2, \Gamma_2, \delta_2, q_{20}, \S, F_2)$ recognises L_2 . The PDA $M_1 =$ $(Q_1, \Sigma_1, \Gamma_1, \delta_1, q_{10}, \S, F_1)$ first translates the input from Σ_1 to its homomorphic image and then runs M_2 on it. So the whole input over Σ_1^* is translated to its image over Σ_2^* and M_2 is run on it. If M_2 accepts, then so is M_1 . The state set takes care of the translation:

- $Q_1 = Q_2 \times \{x \in \Sigma_2^* : x \text{ is a suffix of } h(a) \text{ for all } a \in \Sigma_1\}.$ The second component of the state keeps the translation.
- $q_{10} = (q_{20}, \varepsilon)$.
- $\Sigma_1 = \Sigma_2$, $\Gamma_1 = \Gamma_2$.
- $F_1 = F_2 \times \{\varepsilon\}.$

The translation takes place as follows: $\delta_1((p,\varepsilon),a,X) = \{(p,h(a)),X)\}.$

(b) If L_1 and L_2 are recognised by deterministic Turing machines (DTMs) M_1 and M_2 , then there is a DTM that recognises L_1L_2 .

Ans. The DTM for L_1L_2 works as follows:

 $M:$

Input: x

- i. Split the input x in two parts $x = x_1 x_2$ in all possible ways. If the length of x is *n*, there are $n + 1$ split.
- ii. for $i = 1, 2, 3, 4, \cdots$ do the following steps.
- iii. Simulate M_1 on the first part, x_1 , and simulate M_2 on the second part x_2 for i steps.
- iv. If both the machines accept some split within some i steps, accept x .
- (c) Any context-free language over a one-letter alphabet is a regular language.

Ans. If the language L is finite, there is nothing to prove.

Consier an infinite language L and let the pumping constant be k . So each w of length $\geq k$ in the language can be written as $w = uvxyz$ so that $|vxy| \leq k$, $|vy| > 0$ and for all $i \geq 0$, $uv^i xy^i z \in L$. As there is only one alphabet, we write the last

clause as $uxz(vy)^* \subseteq L$. $|vy| = p$, so $uxz(a^p)^i \in L$ for all $i \geq 0$. Let $\alpha = k!$, we calim that $w(a^{\alpha})^m \in L$ for all $m \geq 0$, as $\alpha \times m = p \times \frac{m \times \alpha}{p}$. Note that α does not depend on w. So for each word $w \in L$ and $|w| \geq k$, $w(a^{\alpha})^m \in L$, for all $m \geq 0$. We observe that each $w \in L$ and $|w| \geq k$ is an element of $a^{k+i}(a^{\alpha})^*$ where $0 \leq i < \alpha$. Consider the least element w_i of $L \cap a^{k+i}(a^{\alpha})^*$. So the language $L = L_1 \cup L_2$, where L_1 is the finite collection of strings of length $\langle k \rangle$ and

 $L_2 = \bigcup_{0 \leq i < \alpha} w_i(a^\alpha)^*$. So L is regular. $[3 \times 4]$

Sig.of the Paper-Setter .