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Instruction : Answer Q1 and any Four(4) from the Remaining Questions.

1. Answer with a short justification whether the following claims are true or false. No
credit will be given for writing only true or false. Assume the alphabet 3 = {0, 1} unless
specified otherwise. < A> means an encoding of the object A. CFL (CFG): context-free
language (grammar), PDA: push-down automaton, r.e.: recursively enumerable, REx:
the collection of all r.e. languages over X.

(a)

Claim: A deterministic finite state transition system over ¥ with n states (the start
state is fixed) can accept 2" different languages for different choices of the set of
final states, and these languages form a Boolean algebra.

True: The set X* is partitioned by the DFA M = (Q,%,6,q0,F) in |Q] = n
equivalence classes (Myhill-Nerode), where every state corresponds to an equiva-
lence class - two strings =,y € ¥X* are said to be related (binary relation =) if
d(qo0, ) = 0(qo,y). This can be shown to be an equivalence relation. If F = @, ¥*
is accepted, if F' = (), () is accepted. Let A,B C @, La or Lp are the languages
accepted when F' = A or F' = B respectively. If FF = AU B, the language accepted
is Ly U Lp, if = AN B, the language accepted is Ly N Lp, if F = @Q \ A, the
language accepted is X* \ L4. So is the claim.

Claim: There are only finite number of unambiguous CFGs for the language L =
{0"1" :n > 1}.

False: There are unambiguous CFG’s for every k£ = 1,2,3,---. The production
rules of the k" CFG (k is fixed) are:

S —01]0011 | --- | OF1% | 0% S1*.
Taking k = 3, the rulwes are S — 01 | 0011 | 000111 | 000S111.

Let C = {L C ¥* : L is co-finite}.
Claim: Each element of C is a CFL and intersections of any two of them is also a
CFL.

True: Each language L € C is co-finite, so it is a regular language, and so it is
CFL. If L1, L1 € C, then L N Loy is also a regular language, and so it is a CFL.

L is a CFL, x € L, and a proper prefix of x is also in L.

Claim: L cannot be accepted by a deterministic push-down automaton (DPDA) in
empty stack.

True: Let x = uv € L, u € L and v = &. The DPDA will empty the stack while
accepting the string v and cannot make any move. But it is suppose to compute
on the remaining portion of the string. As it is a DPDA, there is no other choice.



()

Claim: If L = {17 : p is a prime}, then there is no context-sensitive language L' so
that LL' is a regular language.

False: Take L' = {1™ : n > 1}, which is regular and so is context-sensitive.
LL" = {1" : n > 3} is clearly regular.

Claim: If L is a CFL and = € L is of length greater than or equal to the pumping
constant, the number of strings of L is infinite.

True: Let the pumping constant be k£ and the string be w. By pumping theorem we
can write w = uvzryz, so that [vy| > 0, |vzy| <1, and for each i > 0, uwvlxy’z € L.
So the number of strings in the language are infinite.

Claim: The collection of decidable or recursive languages over Y is a Boolean
algebra with countably infinite number of elements.

True: Recursive languages cannot supersede countability as they are decided by
Turing machines. Both ¥* and () are recursive (they are regular). This class is also
closed under union, intersection and completation. So is the claim.

Claim: The length of encoding (using 0,1) of a deterministic Turing machine over
{0,1}, with the tape alphabet {0, 1, »}, and the number of states n, is O(n).

False: We cannot go for binary encoding as 0 is to be used as separator. So
n

—
Q= {1,11,111,--- ;111 --- 1} is of length O(n?).

Claim: Every r.e. language over {0,1} is not reducible to Lyarr = {< M,w >:
M is a Turing machine that halts on input z}.

False: Every r.e. language is mapping-reducible to Lyarr. Let L be a r.e.
language recognised by a Turing machine M. We can always modify M is such a
way that it halts only when it accepts a string, otherwise it runs forever. Let us
call this machine to be M. Now the reduction mapping f (Turing computable)
is x —< Mp,z >. Note that M is known and the Turing machine that computes
f modifies it.

It is clear that = € L if and only if < My,x >€ Lyarr.

[9 x 3]

Use pumping theorem to prove that L = {0P1? : p 4 ¢ is not a perfect square} is
not a regular language.

Ans. Let L = {0717 : p+q is a perfect square} is regular and the pumping constant
be k. Naturally 0¥ € L and by pumping theorem we can write 0F* = xyz so that
(i) \y| >0, (i) |zy| <k, (iii) for all i > 0, 2y'z € L. Lety—Ol where | < k. Now
zy?z = 0¥ € T. But then the next similar string is 0k +1)* = QF*+2k+1 [ £ o2k-+1
as | < k. So it is impossible for L to be regular. Now, L = (X*\ L) N L(0*1*). L

is regular implies L is regular - a contradiction.

Use Myhill-Nerode theorem and other closure properties of regular languages to
show that L = {0™1" : hef(m,n) > 1} is not regular.

Ans. If possible L = {0719 : hcf(m,n) = 1} is accepted by the DFA M =
(Q7 {07 1}7 57 q0, F)

But we claim that 0P and 09, where p, g are two distinct primes can not be equiv-
alent i.e. d(qo,0P) # §(qo,07). Otherwise, 01¢ € L implies that 0919 € L which is
not the case.



But then there are infinite number of primes, so it is not possible to have a DFA.
L = (%*\ L) N L(0*1*). If L is regular, then so is L - contradiction. So L is not
regular.

[6 + 6]

Design a PDA (state transition diagram) that recognises the language L = {z €
{0,1}* : x # ww}. $ is the bottom marker of the stack.
Ans. Design the CFG with the start symbol $ and use standard construction of

one state PDA. The CFG G = ({$, A, B, D},{0,1}, P,$), where profuction rules
are

AB|BA|A|B

DAD |0

DBD|1

0]1

({q},{0,1},{0,1,%, A, B, D},0,q,%,0). The tran-

I A

$
A
B
D
M =

The corresponding PDA is
sition functions are,

i. If A— a € P, then (¢,a) € 0(q,¢,4) e.g. d(q,e,A) ={(q, DAD), (¢,0)}.

ii. 6(¢,0,0) = {(¢g,e)} and 0(¢,1,1) = {(¢,¢)}-
Use pumping theorem to prove that L = {z € {0,1}* : x = ww} is not a context-
free language.
Ans. Let L be context-free and k is the pumping constant. We consider the string
1¥0*1%0* € L and argue that pumping is impossible. [7 + 5]

c,$—9%

Consider the push-down automaton
P = ({pv q}a {a7 ba C}, {$7 Aa B}a 57p7 $7 ¢)
and formally construct an equivalent
context-free grammar. The accep-
tance is by empty-stack. Clearly ex- b,B-— = BB
plain the non-terminals and the pro-

duction rules.
Ans. The meaningful non-terminals and productions of the grammar are N =

{8, (p89), (pAq), (pBq), (¢39), (¢Aq), (¢Bq)} and

S — (p8q)
(p8q) — a(pAq)(g3q) | b(pBq)(g8q) | c(q%q)
(pAq) — a(pAq)(qAq) | b(pBq)(gAq) | c(qAq)
(pBq) — a(pAq)(¢Bq) | b(pBq)(¢Bq) | c(¢Bq)
(qAq) — b
(¢Bg) — a
(g%q) — €



(b)

If we give ‘better’ names to the non-terminals, we get:

Sl

aAD | bBD | cD
aAX | bBX | cX
aAY |bBY | Y
b

a

w0 wn
R A A A A

R T S

€

Let L be a prefix closed infinite context-free language. Prove that there is an
infinite regular language L' C L.

Ans. Let the pumping constant be k. Consider a string w € L of length > k. We
can divide the string as w = wvxyz so that (i) |vzy| <k, (ii) |vy| > 0, and for all
1 >0, uvimyiz e L.

But then the language is prefix-closed, so for all i > 0, (i) wv' € L, if v # ¢, or (ii)
uzy® € L, if v = . In the first case the regular subset is uv* an in the second case
the regular subset is uzyx*.

[8 + 4]

Prove that Ly = {z; : the Turing machine M; does not accept z;} is not Turing
recognisable.

Ans. If Ly is Turing recognisable, there is a Turing machine M, that recognises
Lg. Let the encoding of the Turing machine be the k" string i.e. < My >= x,
and My is M, in our enumeration.

?
The question is whether xy € Lg. If zp € Ly, then My = M), does not accept zy
ie. xp € Lg. If xp & Ly, then My = My, does not accept x i.e. xp € Lg. So,
x € Lg if and only if zp & Ly - a contradiction. So Ly is not Turing recognisable.

Prove that Ly = {< M >: M is a Turing machine and L(M) = 0} mapping re-
ducible to L— = {< My, My >: M; and M are equivalent Turing machines} as
well L, = {< My, My >: M; and M are not equivalent Turing machines}.

What is your conclusion from this result?

Ans. We construct a Turing machine M, so that L(M.) = (). The mapping
reduction is < M >—< M, M, >. It is clear that < M >€ Ly if and only if
<M, M, >€ L_.

The answer to the remaining portion is not known to me!!

Prove that the universal language L,, = {< M,z >: the Turing machine M accepts
is not mapping reducible to Ly.

Ans. We know that Ly is recursively enumerable. Following Turing machine
recognises this language.

Mﬁi
Input: y

7}



i. If y #< M >, reject y as such a string by definition encodes a machine whose
language is empty,
ii. fort=1,2,3,--- do the following steps
iii. enumerate x1,xs, -, x; € X*
iv. Simulate M (< M >=y) on each of these strings for i steps.
v. If one of the simulation on some z; comes to accept halt, accept y =< M >
as xy, € L(M) # 0.
If L, <m Ly, Ly <m Ly. But we know that Ly is recursively enumerable. That
makes L, recursively enumerable - but that is impossible.
[3 + 6 + 3]

6. Give proper justification for the following statements.

(a)

Context-free languages are closed under inverse-homomorphism.

Ans. Let h: ¥] — I'; be a homomorphism and L be a CFL over 3. The claim
is that h=(L) C ©* is a CFL.

Let the PDA My = (Q2,%2,T2,02,q20,9$, F») recognises Lo. The PDA M; =
(Q1,%1,11,61,q10, 8, F1) first translates the input from ¥; to its homomorphic
image and then runs Mj on it. So the whole input over X7 is translated to its
image over 35 and Ms is run on it. If My accepts, then so is M.

The state set takes care of the translation:

Q1 = Q2x{x € X5 : xis asuffix of h(a) for all @ € ¥;}. The second component
of the state keeps the translation.
® q10 = (g20,¢)-
e Y =3, I'1 =T,
° F1 = F2 X {E}
The translation takes place as follows: 41 ((p,€),a, X) = {(p, h(a)), X)}.
If Ly and Ly are recognised by deterministic Turing machines (DTMs) M; and
Ms, then there is a DTM that recognises LjLo.
Ans. The DTM for LLy works as follows:
M :
Input: x
i. Split the input x in two parts z = x1x2 in all possible ways. If the length of x
is n, there are n + 1 split.
ii. fori=1,2,3,4,--- do the following steps.
iii. Simulate M; on the first part, 1, and simulate My on the second part xy for
1 steps.
iv. If both the machines accept some split within some 4 steps, accept z.
Any context-free language over a one-letter alphabet is a regular language.

Ans. If the language L is finite, there is nothing to prove.

Consier an infinite language L and let the pumping constant be k. So each w of
length > k in the language can be written as w = uwvzyz so that |vzy| < k, |vy| > 0
and for all i > 0, uv'zy’z € L. As there is only one alphabet, we write the last



clause as uzz(vy)* C L. |Jvy| = p, so uzz(aP)’ € L for all i > 0.

Let a = k!, we calim that w(a®)™ € L for all m > 0, as a x m = p X mea' Note
that a does not depend on w.

So for each word w € L and |w| > k, w(a®)™ € L, for all m > 0.

We observe that each w € L and |w| > k is an element of a**?(a®)* where
0 < i < a. Consider the least element w; of L N a**(a®)*. So the language
L = Ly U Ly, where Ly is the finite collection of strings of length < k and
Ly = Up<icq wi(a®)*. So L is regular. [3 x 4]
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