
4 OBJECT FILES

Introduction 4-1
File Format 4-1
Data Representation 4-3

ELF Header 4-4
ELF Identification 4-7
Machine Information (Processor-Specific) 4-9

Sections 4-10
Special Sections 4-17

String Table 4-21

Symbol Table 4-22
Symbol Values 4-26

Relocation 4-27
Relocation Types (Processor-Specific) 4-28

Table of Contents i

DRAFT COPY
March 18, 1997
File: Cchap4

386:adm.book:sum

Page: 44



Introduction

This chapter describes the object file format, called ELF (Executable and Linking
Format). There are three main types of object files.

A relocatable file holds code and data suitable for linking with other object
files to create an executable or a shared object file.

An executable file holds a program suitable for execution; the file specifies
how the function e x e c creates a program’s process image. X

A shared object file holds code and data suitable for linking in two contexts.
First, the link editor [see l d(SD_CMD)] may process it with other relocat-
able and shared object files to create another object file. Second, the
dynamic linker combines it with an executable file and other shared objects
to create a process image.

Created by the assembler and link editor, object files are binary representations of
programs intended to execute directly on a processor. Programs that require
other abstract machines, such as shell scripts, are excluded.

After the introductory material, this chapter focuses on the file format and how it
pertains to building programs. Chapter 5 also describes parts of the object file,
concentrating on the information necessary to execute a program.

File Format

Object files participate in program linking (building a program) and program exe-
cution (running a program). For convenience and efficiency, the object file format
provides parallel views of a file’s contents, reflecting the differing needs of these
activities. Figure 4-1 shows an object file’s organization.

Introduction 4-1

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 45



Figure 4-1: Object File Format

Linking View Execution View_ _____________________ _ ______________________
ELF header ELF header_ _____________________ _ ______________________

Program header table Program header table
optional_ _____________________ _ ______________________

Section 1_ _____________________
. . . Segment 1

_ _____________________ _ ______________________
Section n_ _____________________

. . . Segment 2
_ _____________________ _ ______________________

. . . . . .
_ _____________________ _ ______________________

Section header table Section header table
optional_ _____________________ _ ______________________ 
























































An ELF header resides at the beginning and holds a ‘‘road map’’ describing the
file’s organization. Sections hold the bulk of object file information for the linking
view: instructions, data, symbol table, relocation information, and so on. Descrip-
tions of special sections appear later in the chapter. Chapter 5 discusses segments
and the program execution view of the file.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program
header table; relocatable files do not need one. A section header table contains infor-
mation describing the file’s sections. Every section has an entry in the table; each
entry gives information such as the section name, the section size, and so on. Files
used during linking must have a section header table; other object files may or
may not have one.

NOTE

Although the figure shows the program header table immediately after the
ELF header, and the section header table following the sections, actual files
may differ. Moreover, sections and segments have no specified order. Only
the ELF header has a fixed position in the file.

4-2 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 46



Data Representation

As described here, the object file format supports various processors with 8-bit
bytes and 32-bit architectures. Nevertheless, it is intended to be extensible to
larger (or smaller) architectures. Object files therefore represent some control data
with a machine-independent format, making it possible to identify object files and
interpret their contents in a common way. Remaining data in an object file use the
encoding of the target processor, regardless of the machine on which the file was
created.

Figure 4-2: 32-Bit Data Types

Name Size Alignment Purpose_ ____________________________________________________________
E l f 3 2 _ A d d r 4 4 Unsigned program address
E l f 3 2 _ H a l f 2 2 Unsigned medium integer
E l f 3 2 _ O f f 4 4 Unsigned file offset
E l f 3 2 _ S w o r d 4 4 Signed large integer
E l f 3 2 _ W o r d 4 4 Unsigned large integer
u n s i g n e d c h a r 1 1 Unsigned small integer_ ____________________________________________________________ 



























All data structures that the object file format defines follow the ‘‘natural’’ size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force structure
sizes to a multiple of 4, and so on. Data also have suitable alignment from the
beginning of the file. Thus, for example, a structure containing an E l f 3 2 _ A d d r
member will be aligned on a 4-byte boundary within the file.

For portability reasons, ELF uses no bit-fields.

Introduction 4-3

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 47



ELF Header

Some object file control structures can grow, because the ELF header contains their
actual sizes. If the object file format changes, a program may encounter control
structures that are larger or smaller than expected. Programs might therefore
ignore ‘‘extra’’ information. The treatment of ‘‘missing’’ information depends on
context and will be specified when and if extensions are defined.

Figure 4-3: ELF Header

# d e f i n e E I _ N I D E N T 1 6

t y p e d e f s t r u c t {
u n s i g n e d c h a r e _ i d e n t [ E I _ N I D E N T ] ;
E l f 3 2 _ H a l f e _ t y p e ;
E l f 3 2 _ H a l f e _ m a c h i n e ;
E l f 3 2 _ W o r d e _ v e r s i o n ;
E l f 3 2 _ A d d r e _ e n t r y ;
E l f 3 2 _ O f f e _ p h o f f ;
E l f 3 2 _ O f f e _ s h o f f ;
E l f 3 2 _ W o r d e _ f l a g s ;
E l f 3 2 _ H a l f e _ e h s i z e ;
E l f 3 2 _ H a l f e _ p h e n t s i z e ;
E l f 3 2 _ H a l f e _ p h n u m ;
E l f 3 2 _ H a l f e _ s h e n t s i z e ;
E l f 3 2 _ H a l f e _ s h n u m ;
E l f 3 2 _ H a l f e _ s h s t r n d x ;

} E l f 3 2 _ E h d r ;

e _ i d e n t The initial bytes mark the file as an object file and provide
machine-independent data with which to decode and interpret
the file’s contents. Complete descriptions appear below, in ‘‘ELF
Identification.’’

4-4 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 48



e _ t y p e This member identifies the object file type.

Name Value Meaning_ ______________________________________
E T _ N O N E 0 No file type
E T _ R E L 1 Relocatable file
E T _ E X E C 2 Executable file
E T _ D Y N 3 Shared object file
E T _ C O R E 4 Core file
E T _ L O P R O C 0 x f f 0 0 Processor-specific
E T _ H I P R O C 0 x f f f f Processor-specific_ ______________________________________ 




















Although the core file contents are unspecified, type E T _ C O R E is
reserved to mark the file. Values from E T _ L O P R O C through
E T _ H I P R O C (inclusive) are reserved for processor-specific seman-
tics. If meanings are specified, the processor supplement explains
them. Other values are reserved and will be assigned to new
object file types as necessary.

e _ m a c h i n e This member’s value specifies the required architecture for an
individual file.

Name Value Meaning_ _________________________________________________
E M _ N O N E 0 No machine
E M _ M 3 2 1 AT&T WE 32100
E M _ S P A R C 2 SPARC
E M _ 3 8 6 3 Intel 80386
E M _ 6 8 K 4 Motorola 68000
E M _ 8 8 K 5 Motorola 88000
E M _ 8 6 0 7 Intel 80860
E M _ M I P S 8 MIPS RS3000 Big-Endian E
E M _ M I P S _ R S 4 _ B E 1 0 MIPS RS4000 Big-Endian E
R E S E R V E D 1 1 - 1 6 Reserved for future use E_ _________________________________________________ 


























Other values are reserved and will be assigned to new machines
as necessary. Processor-specific ELF names use the machine name
to distinguish them. For example, the flags mentioned below use
the prefix E F _; a flag named W I D G E T for the E M _ X Y Z machine
would be called E F _ X Y Z _ W I D G E T.

e _ v e r s i o n This member identifies the object file version.

ELF Header 4-5

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 49



Name Value Meaning_ ____________________________________
E V _ N O N E 0 Invalid version
E V _ C U R R E N T 1 Current version_ ____________________________________ 








The value 1 signifies the original file format; extensions will create
new versions with higher numbers. The value of E V _ C U R R E N T,
though given as 1 above, will change as necessary to reflect the
current version number.

e _ e n t r y This member gives the virtual address to which the system first
transfers control, thus starting the process. If the file has no asso-
ciated entry point, this member holds zero.

e _ p h o f f This member holds the program header table’s file offset in bytes.
If the file has no program header table, this member holds zero.

e _ s h o f f This member holds the section header table’s file offset in bytes. If
the file has no section header table, this member holds zero.

e _ f l a g s This member holds processor-specific flags associated with the
file. Flag names take the form E F _machine_flag. See ‘‘Machine
Information’’ in the processor supplement for flag definitions.

e _ e h s i z e This member holds the ELF header’s size in bytes.

e _ p h e n t s i z e This member holds the size in bytes of one entry in the file’s pro-
gram header table; all entries are the same size.

e _ p h n u m This member holds the number of entries in the program header
table. Thus the product of e _ p h e n t s i z e and e _ p h n u m gives the
table’s size in bytes. If a file has no program header table,
e _ p h n u m holds the value zero.

e _ s h e n t s i z e This member holds a section header’s size in bytes. A section
header is one entry in the section header table; all entries are the
same size.

e _ s h n u m This member holds the number of entries in the section header
table. Thus the product of e _ s h e n t s i z e and e _ s h n u m gives the
section header table’s size in bytes. If a file has no section header
table, e _ s h n u m holds the value zero.

e _ s h s t r n d x This member holds the section header table index of the entry
associated with the section name string table. If the file has no
section name string table, this member holds the value
S H N _ U N D E F. See ‘‘Sections’’ and ‘‘String Table’’ below for more
information.

4-6 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 50



ELF Identification

As mentioned above, ELF provides an object file framework to support multiple
processors, multiple data encodings, and multiple classes of machines. To support
this object file family, the initial bytes of the file specify how to interpret the file,
independent of the processor on which the inquiry is made and independent of
the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e _ i d e n t
member.

Figure 4-4: e _ i d e n t [ ] Identification Indexes

Name Value Purpose_ _________________________________________
E I _ M A G 0 0 File identification
E I _ M A G 1 1 File identification
E I _ M A G 2 2 File identification
E I _ M A G 3 3 File identification
E I _ C L A S S 4 File class
E I _ D A T A 5 Data encoding
E I _ V E R S I O N 6 File version
E I _ P A D 7 Start of padding bytes
E I _ N I D E N T 1 6 Size of e _ i d e n t [ ]_ _________________________________________ 
























These indexes access bytes that hold the following values.

E I _ M A G 0 to E I _ M A G 3
A file’s first 4 bytes hold a ‘‘magic number,’’ identifying the file
as an ELF object file.

Name Value Position_ ____________________________________
E L F M A G 0 0 x 7 f e _ i d e n t [ E I _ M A G 0 ]
E L F M A G 1 ’ E ’ e _ i d e n t [ E I _ M A G 1 ]
E L F M A G 2 ’ L ’ e _ i d e n t [ E I _ M A G 2 ]
E L F M A G 3 ’ F ’ e _ i d e n t [ E I _ M A G 3 ]_ ____________________________________ 












ELF Header 4-7

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 51



E I _ C L A S S The next byte, e _ i d e n t [ E I _ C L A S S ], identifies the file’s class, or
capacity.

Name Value Meaning_ ___________________________________
E L F C L A S S N O N E 0 Invalid class
E L F C L A S S 3 2 1 32-bit objects
E L F C L A S S 6 4 2 64-bit objects_ ___________________________________ 










The file format is designed to be portable among machines of
various sizes, without imposing the sizes of the largest machine
on the smallest. Class E L F C L A S S 3 2 supports machines with files
and virtual address spaces up to 4 gigabytes; it uses the basic
types defined above.

Class E L F C L A S S 6 4 is reserved for 64-bit architectures. Its appear-
ance here shows how the object file may change, but the 64-bit
format is otherwise unspecified. Other classes will be defined as
necessary, with different basic types and sizes for object file data.

E I _ D A T A Byte e _ i d e n t [ E I _ D A T A ] specifies the data encoding of the
processor-specific data in the object file. The following encodings
are currently defined.

Name Value Meaning_ __________________________________________
E L F D A T A N O N E 0 Invalid data encoding
E L F D A T A 2 L S B 1 See below
E L F D A T A 2 M S B 2 See below_ __________________________________________ 










More information on these encodings appears below. Other
values are reserved and will be assigned to new encodings as
necessary.

E I _ V E R S I O N Byte e _ i d e n t [ E I _ V E R S I O N ] specifies the ELF header version
number. Currently, this value must be E V _ C U R R E N T, as explained
above for e _ v e r s i o n.

E I _ P A D This value marks the beginning of the unused bytes in e _ i d e n t.
These bytes are reserved and set to zero; programs that read
object files should ignore them. The value of E I _ P A D will change
in the future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As
described above, class E L F C L A S S 3 2 files use objects that occupy 1, 2, and 4 bytes.
Under the defined encodings, objects are represented as shown below. Byte
numbers appear in the upper left corners.

4-8 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 52



Encoding E L F D A T A 2 L S B specifies 2’s complement values, with the least significant
byte occupying the lowest address.

Figure 4-5: Data Encoding E L F D A T A 2 L S B

0 1
0

0 x 0 1

0 2
0

0 1
1

0 x 0 1 0 2

0 4
0

0 3
1

0 2
2

0 1
3

0 x 0 1 0 2 0 3 0 4

Encoding E L F D A T A 2 M S B specifies 2’s complement values, with the most significant
byte occupying the lowest address.

Figure 4-6: Data Encoding E L F D A T A 2 M S B

0 1
0

0 x 0 1

0 1
0

0 2
1

0 x 0 1 0 2

0 1
0

0 2
1

0 3
2

0 4
3

0 x 0 1 0 2 0 3 0 4

Machine Information (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

ELF Header 4-9

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 53



Sections

An object file’s section header table lets one locate all the file’s sections. The sec-
tion header table is an array of E l f 3 2 _ S h d r structures as described below. A sec-
tion header table index is a subscript into this array. The ELF header’s e _ s h o f f
member gives the byte offset from the beginning of the file to the section header
table; e _ s h n u m tells how many entries the section header table contains;
e _ s h e n t s i z e gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file will not have sec-
tions for these special indexes.

Figure 4-7: Special Section Indexes

Name Value_ _______________________
S H N _ U N D E F 0
S H N _ L O R E S E R V E 0 x f f 0 0
S H N _ L O P R O C 0 x f f 0 0
S H N _ H I P R O C 0 x f f 1 f
S H N _ A B S 0 x f f f 1
S H N _ C O M M O N 0 x f f f 2
S H N _ H I R E S E R V E 0 x f f f f_ _______________________ 










S H N _ U N D E F This value marks an undefined, missing, irrelevant, or other-
wise meaningless section reference. For example, a symbol
‘‘defined’’ relative to section number S H N _ U N D E F is an
undefined symbol.

NOTE

Although index 0 is reserved as the undefined value, the section header table
contains an entry for index 0. That is, if the e _ s h n u m member of the ELF
header says a file has 6 entries in the section header table, they have the
indexes 0 through 5. The contents of the initial entry are specified later in this
section.

S H N _ L O R E S E R V E This value specifies the lower bound of the range of reserved
indexes.

S H N _ L O P R O C through S H N _ H I P R O C
Values in this inclusive range are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

4-10 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 54



S H N _ A B S This value specifies absolute values for the corresponding
reference. For example, symbols defined relative to section
number S H N _ A B S have absolute values and are not affected by
relocation.

S H N _ C O M M O N Symbols defined relative to this section are common symbols,
such as FORTRAN C O M M O N or unallocated C external vari-
ables.

S H N _ H I R E S E R V E This value specifies the upper bound of the range of reserved
indexes. The system reserves indexes between
S H N _ L O R E S E R V E and S H N _ H I R E S E R V E, inclusive; the values do
not reference the section header table. That is, the section
header table does not contain entries for the reserved indexes.

Sections contain all information in an object file, except the ELF header, the pro-
gram header table, and the section header table. Moreover, object files’ sections
satisfy several conditions.

Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

Each section occupies one contiguous (possibly empty) sequence of bytes
within a file.

Sections in a file may not overlap. No byte in a file resides in more than one
section.

An object file may have inactive space. The various headers and the sec-
tions might not ‘‘cover’’ every byte in an object file. The contents of the
inactive data are unspecified.

A section header has the following structure.

Sections 4-11

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 55



Figure 4-8: Section Header

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d s h _ n a m e ;
E l f 3 2 _ W o r d s h _ t y p e ;
E l f 3 2 _ W o r d s h _ f l a g s ;
E l f 3 2 _ A d d r s h _ a d d r ;
E l f 3 2 _ O f f s h _ o f f s e t ;
E l f 3 2 _ W o r d s h _ s i z e ;
E l f 3 2 _ W o r d s h _ l i n k ;
E l f 3 2 _ W o r d s h _ i n f o ;
E l f 3 2 _ W o r d s h _ a d d r a l i g n ;
E l f 3 2 _ W o r d s h _ e n t s i z e ;

} E l f 3 2 _ S h d r ;

s h _ n a m e This member specifies the name of the section. Its value is an
index into the section header string table section [see ‘‘String
Table’’ below], giving the location of a null-terminated string.

s h _ t y p e This member categorizes the section’s contents and semantics.
Section types and their descriptions appear below.

s h _ f l a g s Sections support 1-bit flags that describe miscellaneous attri-
butes. Flag definitions appear below.

s h _ a d d r If the section will appear in the memory image of a process,
this member gives the address at which the section’s first byte
should reside. Otherwise, the member contains 0.

s h _ o f f s e t This member’s value gives the byte offset from the beginning
of the file to the first byte in the section. One section type,
S H T _ N O B I T S described below, occupies no space in the file,
and its s h _ o f f s e t member locates the conceptual placement
in the file.

s h _ s i z e This member gives the section’s size in bytes. Unless the sec-
tion type is S H T _ N O B I T S, the section occupies s h _ s i z e bytes
in the file. A section of type S H T _ N O B I T S may have a non-zero
size, but it occupies no space in the file.

s h _ l i n k This member holds a section header table index link, whose
interpretation depends on the section type. A table below
describes the values.

4-12 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 56



s h _ i n f o This member holds extra information, whose interpretation
depends on the section type. A table below describes the
values.

s h _ a d d r a l i g n Some sections have address alignment constraints. For exam-
ple, if a section holds a doubleword, the system must ensure
doubleword alignment for the entire section. That is, the value
of s h _ a d d r must be congruent to 0, modulo the value of
s h _ a d d r a l i g n. Currently, only 0 and positive integral powers
of two are allowed. Values 0 and 1 mean the section has no
alignment constraints.

s h _ e n t s i z e Some sections hold a table of fixed-size entries, such as a sym-
bol table. For such a section, this member gives the size in
bytes of each entry. The member contains 0 if the section does
not hold a table of fixed-size entries.

A section header’s s h _ t y p e member specifies the section’s semantics.

Figure 4-9: Section Types, s h _ t y p e

Name Value_ ___________________________
S H T _ N U L L 0
S H T _ P R O G B I T S 1
S H T _ S Y M T A B 2
S H T _ S T R T A B 3
S H T _ R E L A 4
S H T _ H A S H 5
S H T _ D Y N A M I C 6
S H T _ N O T E 7
S H T _ N O B I T S 8
S H T _ R E L 9
S H T _ S H L I B 1 0
S H T _ D Y N S Y M 1 1
S H T _ L O P R O C 0 x 7 0 0 0 0 0 0 0
S H T _ H I P R O C 0 x 7 f f f f f f f
S H T _ L O U S E R 0 x 8 0 0 0 0 0 0 0
S H T _ H I U S E R 0 x f f f f f f f f_ ___________________________ 





















S H T _ N U L L This value marks the section header as inactive; it does not
have an associated section. Other members of the section
header have undefined values.

Sections 4-13

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 57



S H T _ P R O G B I T S The section holds information defined by the program, whose
format and meaning are determined solely by the program.

S H T _ S Y M T A B and S H T _ D Y N S Y M
These sections hold a symbol table. Currently, an object file
may have only one section of each type, but this restriction
may be relaxed in the future. Typically, S H T _ S Y M T A B provides
symbols for link editing, though it may also be used for
dynamic linking. As a complete symbol table, it may contain
many symbols unnecessary for dynamic linking. Conse-
quently, an object file may also contain a S H T _ D Y N S Y M section,
which holds a minimal set of dynamic linking symbols, to save
space. See ‘‘Symbol Table’’ below for details.

S H T _ S T R T A B The section holds a string table. An object file may have multi-
ple string table sections. See ‘‘String Table’’ below for details.

S H T _ R E L A The section holds relocation entries with explicit addends, such
as type E l f 3 2 _ R e l a for the 32-bit class of object files. An
object file may have multiple relocation sections. See ‘‘Reloca-
tion’’ below for details.

S H T _ H A S H The section holds a symbol hash table. All objects participating 
in dynamic linking must contain a symbol hash table.
Currently, an object file may have only one hash table, but this
restriction may be relaxed in the future. See ‘‘Hash Table’’ in
Chapter 5 for details.

S H T _ D Y N A M I C The section holds information for dynamic linking. Currently,
an object file may have only one dynamic section, but this res-
triction may be relaxed in the future. See ‘‘Dynamic Section’’
in Chapter 5 for details.

S H T _ N O T E The section holds information that marks the file in some way.
See ‘‘Note Section’’ in Chapter 5 for details.

S H T _ N O B I T S A section of this type occupies no space in the file but other-
wise resembles S H T _ P R O G B I T S. Although this section contains
no bytes, the s h _ o f f s e t member contains the conceptual file
offset.

S H T _ R E L The section holds relocation entries without explicit addends,
such as type E l f 3 2 _ R e l for the 32-bit class of object files. An
object file may have multiple relocation sections. See ‘‘Reloca-
tion’’ below for details.

4-14 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 58



S H T _ S H L I B This section type is reserved but has unspecified semantics.
Programs that contain a section of this type do not conform to
the ABI.

S H T _ L O P R O C through S H T _ H I P R O C
Values in this inclusive range are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

S H T _ L O U S E R This value specifies the lower bound of the range of indexes
reserved for application programs.

S H T _ H I U S E R This value specifies the upper bound of the range of indexes
reserved for application programs. Section types between
S H T _ L O U S E R and S H T _ H I U S E R may be used by the application,
without conflicting with current or future system-defined sec-
tion types.

Other section type values are reserved. As mentioned before, the section header
for index 0 (S H N _ U N D E F) exists, even though the index marks undefined section
references. This entry holds the following.

Figure 4-10: Section Header Table Entry: Index 0

Name Value Note_ ___________________________________________________
s h _ n a m e 0 No name
s h _ t y p e S H T _ N U L L Inactive
s h _ f l a g s 0 No flags
s h _ a d d r 0 No address
s h _ o f f s e t 0 No file offset
s h _ s i z e 0 No size
s h _ l i n k S H N _ U N D E F No link information
s h _ i n f o 0 No auxiliary information
s h _ a d d r a l i g n 0 No alignment
s h _ e n t s i z e 0 No entries_ ___________________________________________________ 


























A section header’s s h _ f l a g s member holds 1-bit flags that describe the section’s
attributes. Defined values appear below; other values are reserved.

Sections 4-15

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 59



Figure 4-11: Section Attribute Flags, s h _ f l a g s

Name Value_ ____________________________
S H F _ W R I T E 0 x 1
S H F _ A L L O C 0 x 2
S H F _ E X E C I N S T R 0 x 4
S H F _ M A S K P R O C 0 x f 0 0 0 0 0 0 0_ ____________________________ 






If a flag bit is set in s h _ f l a g s, the attribute is ‘‘on’’ for the section. Otherwise, the
attribute is ‘‘off’’ or does not apply. Undefined attributes are set to zero.

S H F _ W R I T E The section contains data that should be writable during pro-
cess execution.

S H F _ A L L O C The section occupies memory during process execution.
Some control sections do not reside in the memory image of
an object file; this attribute is off for those sections.

S H F _ E X E C I N S T R The section contains executable machine instructions.

S H F _ M A S K P R O C All bits included in this mask are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

Two members in the section header, s h _ l i n k and s h _ i n f o, hold special informa-
tion, depending on section type.

4-16 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 60



Figure 4-12: s h _ l i n k and s h _ i n f o Interpretation

s h _ t y p e s h _ l i n k s h _ i n f o_ ____________________________________________________________________
S H T _ D Y N A M I C 0The section header index of

the string table used by
entries in the section._ ____________________________________________________________________

S H T _ H A S H 0The section header index of
the symbol table to which
the hash table applies._ ____________________________________________________________________

S H T _ R E L
S H T _ R E L A

The section header index of
the associated symbol table.

The section header index of
the section to which the
relocation applies._ ____________________________________________________________________

S H T _ S Y M T A B
S H T _ D Y N S Y M

The section header index of
the associated string table.

One greater than the sym-
bol table index of the last
local symbol (binding
S T B _ L O C A L)._ ____________________________________________________________________

other S H N _ U N D E F 0_ ____________________________________________________________________ 





































Special Sections

Various sections hold program and control information. Sections in the list below
are used by the system and have the indicated types and attributes.

Figure 4-13: Special Sections

Name Type Attributes_ _______________________________________________________
. b s s S H T _ N O B I T S S H F _ A L L O C + S H F _ W R I T E
. c o m m e n t S H T _ P R O G B I T S none
. d a t a S H T _ P R O G B I T S S H F _ A L L O C + S H F _ W R I T E
. d a t a 1 S H T _ P R O G B I T S S H F _ A L L O C + S H F _ W R I T E
. d e b u g S H T _ P R O G B I T S none
. d y n a m i c S H T _ D Y N A M I C see below
. d y n s t r S H T _ S T R T A B S H F _ A L L O C
. d y n s y m S H T _ D Y N S Y M S H F _ A L L O C
. f i n i S H T _ P R O G B I T S S H F _ A L L O C + S H F _ E X E C I N S T R
. g o t S H T _ P R O G B I T S see below


























Sections 4-17

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 61



Figure 4-13: Special Sections (continued )

. h a s h S H T _ H A S H S H F _ A L L O C

. i n i t S H T _ P R O G B I T S S H F _ A L L O C + S H F _ E X E C I N S T R

. i n t e r p S H T _ P R O G B I T S see below

. l i n e S H T _ P R O G B I T S none

. n o t e S H T _ N O T E none

. p l t S H T _ P R O G B I T S see below

. r e lname S H T _ R E L see below

. r e l aname S H T _ R E L A see below

. r o d a t a S H T _ P R O G B I T S S H F _ A L L O C

. r o d a t a 1 S H T _ P R O G B I T S S H F _ A L L O C

. s h s t r t a b S H T _ S T R T A B none

. s t r t a b S H T _ S T R T A B see below

. s y m t a b S H T _ S Y M T A B see below

. t e x t S H T _ P R O G B I T S S H F _ A L L O C + S H F _ E X E C I N S T R_ _______________________________________________________ 



































. b s s This section holds uninitialized data that contribute to the
program’s memory image. By definition, the system initializes the
data with zeros when the program begins to run. The section occu-
pies no file space, as indicated by the section type, S H T _ N O B I T S.

. c o m m e n t This section holds version control information.

. d a t a and . d a t a 1
These sections hold initialized data that contribute to the program’s
memory image.

. d e b u g This section holds information for symbolic debugging. The con-
tents are unspecified. All section names with the prefix . d e b u g are E
reserved for future use in the ABI.

. d y n a m i c This section holds dynamic linking information. The section’s attri- 
butes will include the S H F _ A L L O C bit. Whether the S H F _ W R I T E bit is 
set is processor specific. See Chapter 5 for more information.

. d y n s t r This section holds strings needed for dynamic linking, most com-
monly the strings that represent the names associated with symbol
table entries. See Chapter 5 for more information.

. d y n s y m This section holds the dynamic linking symbol table, as ‘‘Symbol
Table’’ describes. See Chapter 5 for more information.

4-18 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 62



. f i n i This section holds executable instructions that contribute to the pro-
cess termination code. That is, when a program exits normally, the
system arranges to execute the code in this section.

. g o t This section holds the global offset table. See ‘‘Coding Examples’’
in Chapter 3, ‘‘Special Sections’’ in Chapter 4, and ‘‘Global Offset
Table’’ in Chapter 5 of the processor supplement for more informa-
tion.

. h a s h This section holds a symbol hash table. See ‘‘Hash Table’’ in
Chapter 5 for more information.

. i n i t This section holds executable instructions that contribute to the pro-
cess initialization code. That is, when a program starts to run, the
system arranges to execute the code in this section before calling the
main program entry point (called m a i n for C programs).

. i n t e r p This section holds the path name of a program interpreter. If the
file has a loadable segment that includes the section, the section’s
attributes will include the S H F _ A L L O C bit; otherwise, that bit will be
off. See Chapter 5 for more information.

. l i n e This section holds line number information for symbolic debug-
ging, which describes the correspondence between the source pro-
gram and the machine code. The contents are unspecified.

. n o t e This section holds information in the format that ‘‘Note Section’’ in
Chapter 5 describes.

. p l t This section holds the procedure linkage table. See ‘‘Special Sec-
tions’’ in Chapter 4 and ‘‘Procedure Linkage Table’’ in Chapter 5 of
the processor supplement for more information.

. r e lname and . r e l aname
These sections hold relocation information, as ‘‘Relocation’’ below
describes. If the file has a loadable segment that includes reloca-
tion, the sections’ attributes will include the S H F _ A L L O C bit; other-
wise, that bit will be off. Conventionally, name is supplied by the
section to which the relocations apply. Thus a relocation section for
. t e x t normally would have the name . r e l . t e x t or . r e l a . t e x t.

. r o d a t a and . r o d a t a 1
These sections hold read-only data that typically contribute to a
non-writable segment in the process image. See ‘‘Program Header’’
in Chapter 5 for more information.

Sections 4-19

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 63



. s h s t r t a b This section holds section names.

. s t r t a b This section holds strings, most commonly the strings that
represent the names associated with symbol table entries. If the file
has a loadable segment that includes the symbol string table, the
section’s attributes will include the S H F _ A L L O C bit; otherwise, that
bit will be off.

. s y m t a b This section holds a symbol table, as ‘‘Symbol Table’’ in this chapter
describes. If the file has a loadable segment that includes the sym-
bol table, the section’s attributes will include the S H F _ A L L O C bit;
otherwise, that bit will be off.

. t e x t This section holds the ‘‘text,’’ or executable instructions, of a pro-
gram.

Section names with a dot (.) prefix are reserved for the system, although applica-
tions may use these sections if their existing meanings are satisfactory. Applica-
tions may use names without the prefix to avoid conflicts with system sections.
The object file format lets one define sections not in the list above. An object file
may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an 
abbreviation of the architecture name ahead of the section name. The name 
should be taken from the architecture names used for e _ m a c h i n e. For instance 
.FOO.psect is the psect section defined by the FOO architecture. Existing exten- 
sions are called by their historical names. 

Pre-existing Extensions _ _____________________ 

. s d a t a . t d e s c 

. s b s s . l i t 4 

. l i t 8 . r e g i n f o 

. g p t a b . l i b l i s t 

. c o n f l i c t 

NOTE

For information on processor-specific sections, see the ABI supplement for
the desired processor.

4-20 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 64



String Table

String table sections hold null-terminated character sequences, commonly called
strings. The object file uses these strings to represent symbol and section names.
One references a string as an index into the string table section. The first byte,
which is index zero, is defined to hold a null character. Likewise, a string table’s
last byte is defined to hold a null character, ensuring null termination for all
strings. A string whose index is zero specifies either no name or a null name,
depending on the context. An empty string table section is permitted; its section
header’s s h _ s i z e member would contain zero. Non-zero indexes are invalid for
an empty string table.

A section header’s s h _ n a m e member holds an index into the section header string
table section, as designated by the e _ s h s t r n d x member of the ELF header. The
following figures show a string table with 25 bytes and the strings associated with
various indexes.

Index + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9_ _____________________________________________________
0 \ 0 n a m e . \ 0 V a r_ _____________________________________________________

10 i a b l e \ 0 a b l e_ _____________________________________________________
20 \ 0 \ 0 x x \ 0_ _____________________________________________________ 























































Figure 4-14: String Table Indexes

Index String_ ________________
0 none
1 n a m e .
7 V a r i a b l e

11 a b l e
16 a b l e
24 null string_ ________________ 








As the example shows, a string table index may refer to any byte in the section. A
string may appear more than once; references to substrings may exist; and a single
string may be referenced multiple times. Unreferenced strings also are allowed.

String Table 4-21

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 65



Symbol Table

An object file’s symbol table holds information needed to locate and relocate a
program’s symbolic definitions and references. A symbol table index is a sub-
script into this array. Index 0 both designates the first entry in the table and serves
as the undefined symbol index. The contents of the initial entry are specified later
in this section.

Name Value_ __________________
S T N _ U N D E F 0_ __________________ 



A symbol table entry has the following format.

Figure 4-15: Symbol Table Entry

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d s t _ n a m e ;
E l f 3 2 _ A d d r s t _ v a l u e ;
E l f 3 2 _ W o r d s t _ s i z e ;
u n s i g n e d c h a r s t _ i n f o ;
u n s i g n e d c h a r s t _ o t h e r ;
E l f 3 2 _ H a l f s t _ s h n d x ;

} E l f 3 2 _ S y m ;

s t _ n a m e This member holds an index into the object file’s symbol string
table, which holds the character representations of the symbol
names. If the value is non-zero, it represents a string table index
that gives the symbol name. Otherwise, the symbol table entry
has no name.

NOTE

External C symbols have the same names in C and object files’ symbol tables. 

s t _ v a l u e This member gives the value of the associated symbol. Depend-
ing on the context, this may be an absolute value, an address, and
so on; details appear below.

4-22 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 66



s t _ s i z e Many symbols have associated sizes. For example, a data object’s
size is the number of bytes contained in the object. This member
holds 0 if the symbol has no size or an unknown size.

s t _ i n f o This member specifies the symbol’s type and binding attributes.
A list of the values and meanings appears below. The following
code shows how to manipulate the values.

# d e f i n e E L F 3 2 _ S T _ B I N D ( i ) ( ( i ) > > 4 )
# d e f i n e E L F 3 2 _ S T _ T Y P E ( i ) ( ( i ) & 0 x f )
# d e f i n e E L F 3 2 _ S T _ I N F O ( b , t ) ( ( ( b ) < < 4 ) + ( ( t ) & 0 x f ) )

s t _ o t h e r This member currently holds 0 and has no defined meaning.

s t _ s h n d x Every symbol table entry is ‘‘defined’’ in relation to some section;
this member holds the relevant section header table index. As
Figure 4-7 and the related text describe, some section indexes
indicate special meanings.

A symbol’s binding determines the linkage visibility and behavior.

Figure 4-16: Symbol Binding, E L F 3 2 _ S T _ B I N D

Name Value_ ___________________
S T B _ L O C A L 0
S T B _ G L O B A L 1
S T B _ W E A K 2
S T B _ L O P R O C 1 3
S T B _ H I P R O C 1 5_ ___________________ 







S T B _ L O C A L Local symbols are not visible outside the object file containing
their definition. Local symbols of the same name may exist in
multiple files without interfering with each other.

S T B _ G L O B A L Global symbols are visible to all object files being combined. One
file’s definition of a global symbol will satisfy another file’s
undefined reference to the same global symbol.

Symbol Table 4-23

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 67



S T B _ W E A K Weak symbols resemble global symbols, but their definitions
have lower precedence.

S T B _ L O P R O C through S T B _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Global and weak symbols differ in two major ways.

When the link editor combines several relocatable object files, it does not
allow multiple definitions of S T B _ G L O B A L symbols with the same name. On
the other hand, if a defined global symbol exists, the appearance of a weak
symbol with the same name will not cause an error. The link editor honors
the global definition and ignores the weak ones. Similarly, if a common 
symbol exists (that is, a symbol whose st_shndx field holds S H N _ C O M M O N), 
the appearance of a weak symbol with the same name will not cause an 
error. The link editor honors the common definition and ignores the weak 
ones.

When the link editor searches archive libraries [see ‘‘Archive File’’ in
Chapter 7], it extracts archive members that contain definitions of undefined
global symbols. The member’s definition may be either a global or a weak
symbol. The link editor does not extract archive members to resolve
undefined weak symbols. Unresolved weak symbols have a zero value.

In each symbol table, all symbols with S T B _ L O C A L binding precede the weak and
global symbols. As ‘‘Sections’’ above describes, a symbol table section’s s h _ i n f o
section header member holds the symbol table index for the first non-local symbol.

A symbol’s type provides a general classification for the associated entity.

Figure 4-17: Symbol Types, E L F 3 2 _ S T _ T Y P E

Name Value_ ____________________
S T T _ N O T Y P E 0
S T T _ O B J E C T 1
S T T _ F U N C 2
S T T _ S E C T I O N 3
S T T _ F I L E 4
S T T _ L O P R O C 1 3
S T T _ H I P R O C 1 5_ ____________________ 










4-24 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 68



S T T _ N O T Y P E The symbol’s type is not specified.

S T T _ O B J E C T The symbol is associated with a data object, such as a variable,
an array, and so on.

S T T _ F U N C The symbol is associated with a function or other executable
code.

S T T _ S E C T I O N The symbol is associated with a section. Symbol table entries of
this type exist primarily for relocation and normally have
S T B _ L O C A L binding.

S T T _ F I L E Conventionally, the symbol’s name gives the name of the source
file associated with the object file. A file symbol has S T B _ L O C A L
binding, its section index is S H N _ A B S, and it precedes the other
S T B _ L O C A L symbols for the file, if it is present.

S T T _ L O P R O C through S T T _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Function symbols (those with type S T T _ F U N C) in shared object files have special
significance. When another object file references a function from a shared object,
the link editor automatically creates a procedure linkage table entry for
the referenced symbol. Shared object symbols with types other than S T T _ F U N C
will not be referenced automatically through the procedure linkage table.

If a symbol’s value refers to a specific location within a section, its section index
member, s t _ s h n d x, holds an index into the section header table. As the section
moves during relocation, the symbol’s value changes as well, and references to the
symbol continue to ‘‘point’’ to the same location in the program. Some special sec-
tion index values give other semantics.

S H N _ A B S The symbol has an absolute value that will not change because of
relocation.

S H N _ C O M M O N The symbol labels a common block that has not yet been allo-
cated. The symbol’s value gives alignment constraints, similar to
a section’s s h _ a d d r a l i g n member. That is, the link editor will
allocate the storage for the symbol at an address that is a multiple
of s t _ v a l u e. The symbol’s size tells how many bytes are
required.

S H N _ U N D E F This section table index means the symbol is undefined. When
the link editor combines this object file with another that defines
the indicated symbol, this file’s references to the symbol will be
linked to the actual definition.

Symbol Table 4-25

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 69



As mentioned above, the symbol table entry for index 0 (S T N _ U N D E F) is reserved; it
holds the following.

Figure 4-18: Symbol Table Entry: Index 0

Name Value Note_ ____________________________________________
s t _ n a m e 0 No name
s t _ v a l u e 0 Zero value
s t _ s i z e 0 No size
s t _ i n f o 0 No type, local binding
s t _ o t h e r 0
s t _ s h n d x S H N _ U N D E F No section_ ____________________________________________ 


















Symbol Values

Symbol table entries for different object file types have slightly different interpre-
tations for the s t _ v a l u e member.

In relocatable files, s t _ v a l u e holds alignment constraints for a symbol
whose section index is S H N _ C O M M O N.

In relocatable files, s t _ v a l u e holds a section offset for a defined symbol.
That is, s t _ v a l u e is an offset from the beginning of the section that
s t _ s h n d x identifies.

In executable and shared object files, s t _ v a l u e holds a virtual address. To
make these files’ symbols more useful for the dynamic linker, the section
offset (file interpretation) gives way to a virtual address (memory interpre-
tation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files,
the data allow efficient access by the appropriate programs.

4-26 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 70



Relocation

Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at execution.
In other words, relocatable files must have information that describes how to
modify their section contents, thus allowing executable and shared object files to
hold the right information for a process’s program image. Relocation entries are
these data.

Figure 4-19: Relocation Entries

t y p e d e f s t r u c t {
E l f 3 2 _ A d d r r _ o f f s e t ;
E l f 3 2 _ W o r d r _ i n f o ;

} E l f 3 2 _ R e l ;

t y p e d e f s t r u c t {
E l f 3 2 _ A d d r r _ o f f s e t ;
E l f 3 2 _ W o r d r _ i n f o ;
E l f 3 2 _ S w o r d r _ a d d e n d ;

} E l f 3 2 _ R e l a ;

r _ o f f s e t This member gives the location at which to apply the relocation
action. For a relocatable file, the value is the byte offset from the
beginning of the section to the storage unit affected by the relocation.
For an executable file or a shared object, the value is the virtual
address of the storage unit affected by the relocation.

r _ i n f o This member gives both the symbol table index with respect to
which the relocation must be made, and the type of relocation to
apply. For example, a call instruction’s relocation entry would hold
the symbol table index of the function being called. If the index is
S T N _ U N D E F, the undefined symbol index, the relocation uses 0 as the
‘‘symbol value.’’ Relocation types are processor-specific; descrip-
tions of their behavior appear in the processor supplement. When
the text in the processor supplement refers to a relocation entry’s
relocation type or symbol table index, it means the result of applying
E L F 3 2 _ R _ T Y P E or E L F 3 2 _ R _ S Y M, respectively, to the entry’s r _ i n f o
member.

Relocation 4-27

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 71



# d e f i n e E L F 3 2 _ R _ S Y M ( i ) ( ( i ) > > 8 )
# d e f i n e E L F 3 2 _ R _ T Y P E ( i ) ( ( u n s i g n e d c h a r ) ( i ) )
# d e f i n e E L F 3 2 _ R _ I N F O ( s , t ) ( ( ( s ) < < 8 ) + ( u n s i g n e d c h a r ) ( t ) )

r _ a d d e n d This member specifies a constant addend used to compute the value
to be stored into the relocatable field.

As shown above, only E l f 3 2 _ R e l a entries contain an explicit addend. Entries of
type E l f 3 2 _ R e l store an implicit addend in the location to be modified. Depend-
ing on the processor architecture, one form or the other might be necessary or
more convenient. Consequently, an implementation for a particular machine may
use one form exclusively or either form depending on context.

A relocation section references two other sections: a symbol table and a section to
modify. The section header’s s h _ i n f o and s h _ l i n k members, described in ‘‘Sec-
tions’’ above, specify these relationships. Relocation entries for different object
files have slightly different interpretations for the r _ o f f s e t member.

In relocatable files, r _ o f f s e t holds a section offset. That is, the relocation
section itself describes how to modify another section in the file; relocation
offsets designate a storage unit within the second section.

In executable and shared object files, r _ o f f s e t holds a virtual address. To
make these files’ relocation entries more useful for the dynamic linker, the
section offset (file interpretation) gives way to a virtual address (memory
interpretation).

Although the interpretation of r _ o f f s e t changes for different object files to allow
efficient access by the relevant programs, the relocation types’ meanings stay the
same.

Relocation Types (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

4-28 OBJECT FILES

DRAFT COPY
March 18, 1997

File: chap4
386:adm.book:sum

Page: 72



5 PROGRAM LOADING AND
DYNAMIC LINKING

Introduction 5-1

Program Header 5-2
Base Address 5-5
Segment Permissions 5-5
Segment Contents 5-7
Note Section 5-8

Program Loading (Processor-Specific) 5-11

Dynamic Linking 5-12
Program Interpreter 5-12
Dynamic Linker 5-13
Dynamic Section 5-14
Shared Object Dependencies 5-19
Global Offset Table (Processor-Specific) 5-21
Procedure Linkage Table (Processor-Specific) 5-21
Hash Table 5-21
Initialization and Termination Functions 5-22

Table of Contents i

DRAFT COPY
March 18, 1997
File: Cchap5

386:adm.book:sum

Page: 73



Introduction

This chapter describes the object file information and system actions that create
running programs. Some information here applies to all systems; information
specific to one processor resides in sections marked accordingly.

Executable and shared object files statically represent programs. To execute such
programs, the system uses the files to create dynamic program representations, or
process images. As section ‘‘Virtual Address Space’’ in Chapter 3 of the processor
supplement describes, a process image has segments that hold its text, data, stack,
and so on. This chapter’s major sections discuss the following.

Program header. This section complements Chapter 4, describing object file
structures that relate directly to program execution. The primary data
structure, a program header table, locates segment images within the file
and contains other information necessary to create the memory image for
the program.

Program loading. Given an object file, the system must load it into memory
for the program to run.

Dynamic linking. After the system loads the program, it must complete the
process image by resolving symbolic references among the object files that
compose the process.

NOTE 
The processor supplement defines a naming convention for ELF constants 
that have processor ranges specified. Names such as DT_, PT_, for proces- 
sor specific extensions, incorporate the name of the processor: 
DT_M32_SPECIAL, for example. Pre–existing processor extensions not 
using this convention will be supported. 

Pre-existing Extensions _ ____________________ 

D T _ J M P _ R E L 

Introduction 5-1

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 74



Program Header

An executable or shared object file’s program header table is an array of struc-
tures, each describing a segment or other information the system needs to prepare
the program for execution. An object file segment contains one or more sections, as
‘‘Segment Contents’’ describes below. Program headers are meaningful only for
executable and shared object files. A file specifies its own program header size
with the ELF header’s e _ p h e n t s i z e and e _ p h n u m members [see ‘‘ELF Header’’ in
Chapter 4].

Figure 5-1: Program Header

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d p _ t y p e ;
E l f 3 2 _ O f f p _ o f f s e t ;
E l f 3 2 _ A d d r p _ v a d d r ;
E l f 3 2 _ A d d r p _ p a d d r ;
E l f 3 2 _ W o r d p _ f i l e s z ;
E l f 3 2 _ W o r d p _ m e m s z ;
E l f 3 2 _ W o r d p _ f l a g s ;
E l f 3 2 _ W o r d p _ a l i g n ;

} E l f 3 2 _ P h d r ;

p _ t y p e This member tells what kind of segment this array element
describes or how to interpret the array element’s information.
Type values and their meanings appear below.

p _ o f f s e t This member gives the offset from the beginning of the file at
which the first byte of the segment resides.

p _ v a d d r This member gives the virtual address at which the first byte of
the segment resides in memory.

p _ p a d d r On systems for which physical addressing is relevant, this
member is reserved for the segment’s physical address. Because
System V ignores physical addressing for application programs,
this member has unspecified contents for executable files and
shared objects.

5-2 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 75



p _ f i l e s z This member gives the number of bytes in the file image of the
segment; it may be zero.

p _ m e m s z This member gives the number of bytes in the memory image of
the segment; it may be zero.

p _ f l a g s This member gives flags relevant to the segment. Defined flag
values appear below.

p _ a l i g n As ‘‘Program Loading’’ describes in this chapter of the processor
supplement, loadable process segments must have congruent
values for p _ v a d d r and p _ o f f s e t, modulo the page size. This
member gives the value to which the segments are aligned in
memory and in the file. Values 0 and 1 mean no alignment is
required. Otherwise, p _ a l i g n should be a positive, integral
power of 2, and p _ v a d d r should equal p _ o f f s e t, modulo
p _ a l i g n.

Some entries describe process segments; others give supplementary information
and do not contribute to the process image. Segment entries may appear in any
order, except as explicitly noted below. Defined type values follow; other values
are reserved for future use.

Figure 5-2: Segment Types, p _ t y p e

Name Value_________________________
P T _ N U L L 0
P T _ L O A D 1
P T _ D Y N A M I C 2
P T _ I N T E R P 3
P T _ N O T E 4
P T _ S H L I B 5
P T _ P H D R 6
P T _ L O P R O C 0 x 7 0 0 0 0 0 0 0
P T _ H I P R O C 0 x 7 f f f f f f f_________________________ 












P T _ N U L L The array element is unused; other members’ values are
undefined. This type lets the program header table have ignored
entries.

P T _ L O A D The array element specifies a loadable segment, described by
p _ f i l e s z and p _ m e m s z. The bytes from the file are mapped to
the beginning of the memory segment. If the segment’s memory
size (p _ m e m s z) is larger than the file size (p _ f i l e s z), the ‘‘extra’’

Program Header 5-3

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 76



bytes are defined to hold the value 0 and to follow the segment’s
initialized area. The file size may not be larger than the memory
size. Loadable segment entries in the program header table
appear in ascending order, sorted on the p _ v a d d r member.

P T _ D Y N A M I C The array element specifies dynamic linking information. See
‘‘Dynamic Section’’ below for more information.

P T _ I N T E R P The array element specifies the location and size of a null-
terminated path name to invoke as an interpreter. This segment
type is meaningful only for executable files (though it may occur
for shared objects); it may not occur more than once in a file. If it
is present, it must precede any loadable segment entry. See ‘‘Pro-
gram Interpreter’’ below for further information.

P T _ N O T E The array element specifies the location and size of auxiliary
information. See ‘‘Note Section’’ below for details.

P T _ S H L I B This segment type is reserved but has unspecified semantics. Pro-
grams that contain an array element of this type do not conform
to the ABI.

P T _ P H D R The array element, if present, specifies the location and size of the
program header table itself, both in the file and in the memory
image of the program. This segment type may not occur more
than once in a file. Moreover, it may occur only if the program
header table is part of the memory image of the program. If it is
present, it must precede any loadable segment entry. See ‘‘Pro-
gram Interpreter’’ below for further information.

P T _ L O P R O C through P T _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

NOTE

Unless specifically required elsewhere, all program header segment types are
optional. That is, a file’s program header table may contain only those ele-
ments relevant to its contents.

5-4 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 77



Base Address

As ‘‘Program Loading’’ in this chapter of the processor supplement describes, the E
virtual addresses in the program headers might not represent the actual virtual E
addresses of the program’s memory image. Executable files typically contain E
absolute code. To let the process execute correctly, the segments must reside at E
the virtual addresses used to build the executable file. On the other hand, shared E
object segments typically contain position-independent code. This lets a segment’s E
virtual address change from one process to another, without invalidating execu- E
tion behavior. Though the system chooses virtual addresses for individual E
processes, it maintains the segments’ relative positions. Because position- E
independent code uses relative addressing between segments, the difference E
between virtual addresses in memory must match the difference between virtual E
addresses in the file. The difference between the virtual address of any segment in E
memory and the corresponding virtual address in the file is thus a single constant E
value for any one executable or shared object in a given process. This difference is E
the base address. One use of the base address is to relocate the memory image of E
the program during dynamic linking.

An executable or shared object file’s base address is calculated during execution
from three values: the virtual memory load address, the maximum page size, and M
the lowest virtual address of a program’s loadable segment. To compute the base E
address, one determines the memory address associated with the lowest p _ v a d d r
value for a P T _ L O A D segment. This address is truncated to the nearest multiple of E
the maximum page size. The corresponding p _ v a d d r value itself is also truncated E
to the nearest multiple of the maximum page size. The base address is the differ- E
ence between the truncated memory address and the truncated p _ v a d d r value.

See this chapter in the processor supplement for more information and examples.
‘‘Operating System Interface’’ of Chapter 3 in the processor supplement contains
more information about the virtual address space and page size.

Segment Permissions

A program to be loaded by the system must must have at least one loadable seg-
ment (although this is not required by the file format). When the system creates
loadable segments’ memory images, it gives access permissions as specified in the
p _ f l a g s member.

Program Header 5-5

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 78



Figure 5-3: Segment Flag Bits, p _ f l a g s

Name Value Meaning_ _______________________________________
P F _ X 0 x 1 Execute
P F _ W 0 x 2 Write
P F _ R 0 x 4 Read
P F _ M A S K P R O C 0 x f 0 0 0 0 0 0 0 Unspecified_ _______________________________________ 












All bits included in the P F _ M A S K P R O C mask are reserved for processor-specific
semantics. If meanings are specified, the processor supplement explains them.

If a permission bit is 0, that type of access is denied. Actual memory permissions
depend on the memory management unit, which may vary from one system to
another. Although all flag combinations are valid, the system may grant more
access than requested. In no case, however, will a segment have write permission
unless it is specified explicitly. The following table shows both the exact flag
interpretation and the allowable flag interpretation. ABI-conforming systems may
provide either.

Figure 5-4: Segment Permissions

Flags Value Exact Allowable_ __________________________________________________________________
none 0 All access denied All access denied
P F _ X 1 Execute only Read, execute
P F _ W 2 Write only Read, write, execute
P F _ W + P F _ X 3 Write, execute Read, write, execute
P F _ R 4 Read only Read, execute
P F _ R + P F _ X 5 Read, execute Read, execute
P F _ R + P F _ W 6 Read, write Read, write, execute
P F _ R + P F _ W + P F _ X 7 Read, write, execute Read, write, execute_ __________________________________________________________________ 

































For example, typical text segments have read and execute—but not write—
permissions. Data segments normally have read, write, and execute permissions.

5-6 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 79



Segment Contents

An object file segment comprises one or more sections, though this fact is tran-
sparent to the program header. Whether the file segment holds one or many sec-
tions also is immaterial to program loading. Nonetheless, various data must be
present for program execution, dynamic linking, and so on. The diagrams below
illustrate segment contents in general terms. The order and membership of sec-
tions within a segment may vary; moreover, processor-specific constraints may
alter the examples below. See the processor supplement for details.

Text segments contain read-only instructions and data, typically including the fol-
lowing sections described in Chapter 4. Other sections may also reside in loadable
segments; these examples are not meant to give complete and exclusive segment
contents.

Figure 5-5: Text Segment
_ __________

. t e x t_ __________
. r o d a t a_ __________
. h a s h_ __________
. d y n s y m_ __________
. d y n s t r_ __________
. p l t_ __________

. r e l . g o t_ __________ 





















Data segments contain writable data and instructions, typically including the fol-
lowing sections.

Figure 5-6: Data Segment
_ __________

. d a t a_ __________
. d y n a m i c_ __________
. g o t_ __________
. b s s_ __________ 












A P T _ D Y N A M I C program header element points at the . d y n a m i c section, explained
in ‘‘Dynamic Section’’ below. The . g o t and . p l t sections also hold information
related to position-independent code and dynamic linking. Although the . p l t
appears in a text segment above, it may reside in a text or a data segment,

Program Header 5-7

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 80



depending on the processor. See ‘‘Global Offset Table’’ and ‘‘Procedure Linkage
Table’’ in this chapter of the processor supplement for details.

As ‘‘Sections’’ in Chapter 4 describes, the . b s s section has the type S H T _ N O B I T S.
Although it occupies no space in the file, it contributes to the segment’s memory
image. Normally, these uninitialized data reside at the end of the segment,
thereby making p _ m e m s z larger than p _ f i l e s z in the associated program header
element.

Note Section

Sometimes a vendor or system builder needs to mark an object file with special
information that other programs will check for conformance, compatibility, etc.
Sections of type S H T _ N O T E and program header elements of type P T _ N O T E can be
used for this purpose. The note information in sections and program header ele-
ments holds any number of entries, each of which is an array of 4-byte words in
the format of the target processor. Labels appear below to help explain note infor-
mation organization, but they are not part of the specification.

Figure 5-7: Note Information
_ ________
n a m e s z_ ________
d e s c s z_ ________
t y p e_ ________
n a m e
. . .

_ ________
d e s c
. . .

_ ________ 



















n a m e s z and n a m e
The first n a m e s z bytes in n a m e contain a null-terminated character
representation of the entry’s owner or originator. There is no formal
mechanism for avoiding name conflicts. By convention, vendors use
their own name, such as ‘‘XYZ Computer Company,’’ as the identifier.
If no name is present, n a m e s z contains 0. Padding is present, if neces-
sary, to ensure 4-byte alignment for the descriptor. Such padding is
not included in n a m e s z.

5-8 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 81



d e s c s z and d e s c
The first d e s c s z bytes in d e s c hold the note descriptor. The ABI
places no constraints on a descriptor’s contents. If no descriptor is
present, d e s c s z contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the next note entry. Such padding is not
included in d e s c s z.

t y p e This word gives the interpretation of the descriptor. Each originator
controls its own types; multiple interpretations of a single type value
may exist. Thus, a program must recognize both the name and the
type to ‘‘understand’’ a descriptor. Types currently must be non-
negative. The ABI does not define what descriptors mean.

To illustrate, the following note segment holds two entries.

Figure 5-8: Example Note Segment

+0 +1 +2 +3_ _____________________
n a m e s z 7_ _____________________
d e s c s z 0 No descriptor_ _____________________
t y p e 1_ _____________________
n a m e X Y Z_ _____________________

C 


o 



\ 0 




pad_ ______________________ _____________________
n a m e s z 7_ _____________________
d e s c s z 8_ _____________________
t y p e 3_ _____________________
n a m e X Y Z_ _____________________

C 


o 



\ 0 




pad_ _____________________
d e s c word 0_ _____________________

word 1_ _____________________ 



































NOTE

The system reserves note information with no name (n a m e s z = = 0) and with a
zero-length name (n a m e [ 0 ] = = ’ \ 0 ’) but currently defines no types. All other
names must have at least one non-null character.

Program Header 5-9

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 82



NOTE

Note information is optional. The presence of note information does not affect
a program’s ABI conformance, provided the information does not affect the
program’s execution behavior. Otherwise, the program does not conform to
the ABI and has undefined behavior.

5-10 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 83



Program Loading (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Program Loading (Processor-Specific) 5-11

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 84



Dynamic Linking

Program Interpreter

An executable file that participates in dynamic linking shall have one P T _ I N T E R P E
program header element. During the function e x e c, the system retrieves a path X
name from the P T _ I N T E R P segment and creates the initial process image from the
interpreter file’s segments. That is, instead of using the original executable file’s
segment images, the system composes a memory image for the interpreter. It then
is the interpreter’s responsibility to receive control from the system and provide
an environment for the application program.

As ‘‘Process Initialization’’ in Chapter 3 of the processor supplement mentions, the
interpreter receives control in one of two ways. First, it may receive a file descrip-
tor to read the executable file, positioned at the beginning. It can use this file
descriptor to read and/or map the executable file’s segments into memory.
Second, depending on the executable file format, the system may load the execut-
able file into memory instead of giving the interpreter an open file descriptor.
With the possible exception of the file descriptor, the interpreter’s initial process
state matches what the executable file would have received. The interpreter itself
may not require a second interpreter. An interpreter may be either a shared object
or an executable file.

A shared object (the normal case) is loaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area used by the function m m a p and X
related services [see ‘‘Virtual Address Space’’ in Chapter 3 of the processor
supplement]. Consequently, a shared object interpreter typically will not
conflict with the original executable file’s original segment addresses.

An executable file is loaded at fixed addresses; the system creates its seg-
ments using the virtual addresses from the program header table. Conse-
quently, an executable file interpreter’s virtual addresses may collide with
the first executable file; the interpreter is responsible for resolving conflicts.

5-12 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 85



Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a
program header element of type P T _ I N T E R P to an executable file, telling the sys-
tem to invoke the dynamic linker as the program interpreter. 

NOTE 
The locations of the system provided dynamic linkers are processor–specific. 

E x e c and the dynamic linker cooperate to create the process image for the pro-
gram, which entails the following actions:

Adding the executable file’s memory segments to the process image;

Adding shared object memory segments to the process image;

Performing relocations for the executable file and its shared objects;

Closing the file descriptor that was used to read the executable file, if one
was given to the dynamic linker;

Transferring control to the program, making it look as if the program had
received control directly from the function e x e c X

The link editor also constructs various data that assist the dynamic linker for exe-
cutable and shared object files. As shown above in ‘‘Program Header,’’ these data
reside in loadable segments, making them available during execution. (Once
again, recall the exact segment contents are processor-specific. See the processor
supplement for complete information.)

A . d y n a m i c section with type S H T _ D Y N A M I C holds various data. The struc-
ture residing at the beginning of the section holds the addresses of other
dynamic linking information.

The . h a s h section with type S H T _ H A S H holds a symbol hash table.

The . g o t and . p l t sections with type S H T _ P R O G B I T S hold two separate
tables: the global offset table and the procedure linkage table. Chapter 3
discusses how programs use the global offset table for position-independent
code. Sections below explain how the dynamic linker uses and changes the
tables to create memory images for object files.

Dynamic Linking 5-13

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 86



Because every ABI-conforming program imports the basic system services from a
shared object library [see ‘‘System Library’’ in Chapter 6], the dynamic linker par-
ticipates in every ABI-conforming program execution.

As ‘‘Program Loading’’ explains in the processor supplement, shared objects may
occupy virtual memory addresses that are different from the addresses recorded
in the file’s program header table. The dynamic linker relocates the memory
image, updating absolute addresses before the application gains control.
Although the absolute address values would be correct if the library were loaded
at the addresses specified in the program header table, this normally is not the
case.

If the process environment [see the function e x e c] contains a variable named X
L D _ B I N D _ N O W with a non-null value, the dynamic linker processes all relocation
before transferring control to the program. For example, all the following
environment entries would specify this behavior.

L D _ B I N D _ N O W = 1

L D _ B I N D _ N O W = o n

L D _ B I N D _ N O W = o f f

Otherwise, L D _ B I N D _ N O W either does not occur in the environment or has a null
value. The dynamic linker is permitted to evaluate procedure linkage table entries
lazily, thus avoiding symbol resolution and relocation overhead for functions that
are not called. See ‘‘Procedure Linkage Table’’ in this chapter of the processor
supplement for more information.

Dynamic Section

If an object file participates in dynamic linking, its program header table will have
an element of type P T _ D Y N A M I C. This ‘‘segment’’ contains the . d y n a m i c section.
A special symbol, _ D Y N A M I C, labels the section, which contains an array of the fol-
lowing structures.

5-14 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 87



Figure 5-9: Dynamic Structure

t y p e d e f s t r u c t {
E l f 3 2 _ S w o r d d _ t a g ;
u n i o n {

E l f 3 2 _ W o r d d _ v a l ;
E l f 3 2 _ A d d r d _ p t r ;

} d _ u n ;
} E l f 3 2 _ D y n ;

e x t e r n E l f 3 2 _ D y n _ D Y N A M I C [ ] ;

For each object with this type, d _ t a g controls the interpretation of d _ u n.

d _ v a l These E l f 3 2 _ W o r d objects represent integer values with various
interpretations.

d _ p t r These E l f 3 2 _ A d d r objects represent program virtual addresses. As
mentioned previously, a file’s virtual addresses might not match the
memory virtual addresses during execution. When interpreting
addresses contained in the dynamic structure, the dynamic linker
computes actual addresses, based on the original file value and the
memory base address. For consistency, files do not contain relocation
entries to ‘‘correct’’ addresses in the dynamic structure.

The following table summarizes the tag requirements for executable and shared
object files. If a tag is marked ‘‘mandatory,’’ then the dynamic linking array for an
ABI-conforming file must have an entry of that type. Likewise, ‘‘optional’’ means
an entry for the tag may appear but is not required.

Figure 5-10: Dynamic Array Tags, d _ t a g

Name Value d _ u n Executable Shared Object_ ___________________________________________________________________
D T _ N U L L 0 ignored mandatory mandatory
D T _ N E E D E D 1 d _ v a l optional optional
D T _ P L T R E L S Z 2 d _ v a l optional optional
D T _ P L T G O T 3 d _ p t r optional optional
D T _ H A S H 4 d _ p t r mandatory mandatory
D T _ S T R T A B 5 d _ p t r mandatory mandatory
D T _ S Y M T A B 6 d _ p t r mandatory mandatory




































Dynamic Linking 5-15

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 88



Figure 5-10: Dynamic Array Tags, d _ t a g (continued )

Name Value d _ u n Executable Shared Object_ ___________________________________________________________________
D T _ R E L A‡ 7 d _ p t r mandatory optional
D T _ R E L A S Z 8 d _ v a l mandatory optional
D T _ R E L A E N T 9 d _ v a l mandatory optional
D T _ S T R S Z 1 0 d _ v a l mandatory mandatory
D T _ S Y M E N T 1 1 d _ v a l mandatory mandatory
D T _ I N I T 1 2 d _ p t r optional optional
D T _ F I N I 1 3 d _ p t r optional optional
D T _ S O N A M E 1 4 d _ v a l ignored optional
D T _ R P A T H 1 5 d _ v a l optional ignored
D T _ S Y M B O L I C 1 6 ignored ignored optional
D T _ R E L† 1 7 d _ p t r mandatory optional
D T _ R E L S Z 1 8 d _ v a l mandatory optional
D T _ R E L E N T 1 9 d _ v a l mandatory optional
D T _ P L T R E L 2 0 d _ v a l optional optional
D T _ D E B U G 2 1 d _ p t r optional ignored
D T _ T E X T R E L 2 2 ignored optional optional
D T _ J M P R E L 2 3 d _ p t r optional optional
D T _ B I N D _ N O W 2 4 ignored optional optional M
D T _ L O P R O C 0 x 7 0 0 0 0 0 0 0 unspecified unspecified unspecified
D T _ H I P R O C 0 x 7 f f f f f f f unspecified unspecified unspecified_ ___________________________________________________________________ 




































































































† See the description of DT_RELA and DT_REL below for the relationship between these M
two tags.

D T _ N U L L An entry with a D T _ N U L L tag marks the end of the _ D Y N A M I C
array.

D T _ N E E D E D This element holds the string table offset of a null-terminated
string, giving the name of a needed library. The offset is an index
into the table recorded in the D T _ S T R T A B entry. See ‘‘Shared
Object Dependencies’’ for more information about these names.
The dynamic array may contain multiple entries with this type.
These entries’ relative order is significant, though their relation to
entries of other types is not.

D T _ P L T R E L S Z This element holds the total size, in bytes, of the relocation entries
associated with the procedure linkage table. If an entry of type
D T _ J M P R E L is present, a D T _ P L T R E L S Z must accompany it.

5-16 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 89



D T _ P L T G O T This element holds an address associated with the procedure link-
age table and/or the global offset table. See this section in the
processor supplement for details.

D T _ H A S H This element holds the address of the symbol hash table, 
described in ‘‘Hash Table.’’ This hash table refers to the symbol 
table referenced by the D T _ S Y M T A B element.

D T _ S T R T A B This element holds the address of the string table, described in
Chapter 4. Symbol names, library names, and other strings reside
in this table.

D T _ S Y M T A B This element holds the address of the symbol table, described in
Chapter 4, with E l f 3 2 _ S y m entries for the 32-bit class of files.

D T _ R E L A This element holds the address of a relocation table, described in
Chapter 4. Entries in the table have explicit addends, such as
E l f 3 2 _ R e l a for the 32-bit file class. An object file may have mul-
tiple relocation sections. When building the relocation table for
an executable or shared object file, the link editor catenates those
sections to form a single table. Although the sections remain
independent in the object file, the dynamic linker sees a single
table. When the dynamic linker creates the process image for an
executable file or adds a shared object to the process image, it
reads the relocation table and performs the associated actions. If
this element is present, the dynamic structure must also have
D T _ R E L A S Z and D T _ R E L A E N T elements. When relocation is ‘‘man-
datory’’ for a file, either D T _ R E L A or D T _ R E L must occur (both are M
permitted but only one is required).

D T _ R E L A S Z This element holds the total size, in bytes, of the D T _ R E L A reloca-
tion table.

D T _ R E L A E N T This element holds the size, in bytes, of the D T _ R E L A relocation
entry.

D T _ S T R S Z This element holds the size, in bytes, of the string table.

D T _ S Y M E N T This element holds the size, in bytes, of a symbol table entry.

D T _ I N I T This element holds the address of the initialization function, dis-
cussed in ‘‘Initialization and Termination Functions’’ below.

D T _ F I N I This element holds the address of the termination function, dis-
cussed in ‘‘Initialization and Termination Functions’’ below.

Dynamic Linking 5-17

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 90



D T _ S O N A M E This element holds the string table offset of a null-terminated
string, giving the name of the shared object. The offset is an index
into the table recorded in the D T _ S T R T A B entry. See ‘‘Shared
Object Dependencies’’ below for more information about these
names.

D T _ R P A T H This element holds the string table offset of a null-terminated
search library search path string, discussed in ‘‘Shared Object
Dependencies.’’ The offset is an index into the table recorded in
the D T _ S T R T A B entry.

D T _ S Y M B O L I C This element’s presence in a shared object library alters the
dynamic linker’s symbol resolution algorithm for references
within the library. Instead of starting a symbol search with the
executable file, the dynamic linker starts from the shared object
itself. If the shared object fails to supply the referenced symbol,
the dynamic linker then searches the executable file and other
shared objects as usual.

D T _ R E L This element is similar to D T _ R E L A, except its table has implicit
addends, such as E l f 3 2 _ R e l for the 32-bit file class. If this ele-
ment is present, the dynamic structure must also have D T _ R E L S Z
and D T _ R E L E N T elements.

D T _ R E L S Z This element holds the total size, in bytes, of the D T _ R E L reloca-
tion table.

D T _ R E L E N T This element holds the size, in bytes, of the D T _ R E L relocation
entry.

D T _ P L T R E L This member specifies the type of relocation entry to which the
procedure linkage table refers. The d _ v a l member holds D T _ R E L
or D T _ R E L A, as appropriate. All relocations in a procedure link-
age table must use the same relocation.

D T _ D E B U G This member is used for debugging. Its contents are not specified
for the ABI; programs that access this entry are not ABI-
conforming.

D T _ T E X T R E L This member’s absence signifies that no relocation entry should
cause a modification to a non-writable segment, as specified by
the segment permissions in the program header table. If this
member is present, one or more relocation entries might request
modifications to a non-writable segment, and the dynamic linker
can prepare accordingly.

5-18 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 91



D T _ J M P R E L If present, this entries’ d _ p t r member holds the address of reloca-
tion entries associated solely with the procedure linkage table.
Separating these relocation entries lets the dynamic linker ignore
them during process initialization, if lazy binding is enabled. If
this entry is present, the related entries of types D T _ P L T R E L S Z and
D T _ P L T R E L must also be present.

D T _ B I N D _ N O W If present in a shared object or executable, this entry instructs the M
dynamic linker to process all relocations for the object containing M
this entry before transferring control to the program. The pres- M
ence of this entry takes precedence over a directive to use lazy M
binding for this object when specified through the environment or M
via d l o p e n(BA_LIB).

D T _ L O P R O C through D T _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Except for the D T _ N U L L element at the end of the array, and the relative order of
D T _ N E E D E D elements, entries may appear in any order. Tag values not appearing
in the table are reserved.

Shared Object Dependencies

When the link editor processes an archive library, it extracts library members and
copies them into the output object file. These statically linked services are avail-
able during execution without involving the dynamic linker. Shared objects also
provide services, and the dynamic linker must attach the proper shared object files
to the process image for execution. M

When the dynamic linker creates the memory segments for an object file, the
dependencies (recorded in D T _ N E E D E D entries of the dynamic structure) tell what
shared objects are needed to supply the program’s services. By repeatedly con-
necting referenced shared objects and their dependencies, the dynamic linker
builds a complete process image. When resolving symbolic references, the
dynamic linker examines the symbol tables with a breadth-first search. That is, it
first looks at the symbol table of the executable program itself, then at the symbol
tables of the D T _ N E E D E D entries (in order), then at the second level D T _ N E E D E D
entries, and so on. Shared object files must be readable by the process; other per-
missions are not required.

Dynamic Linking 5-19

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 92



NOTE

Even when a shared object is referenced multiple times in the dependency
list, the dynamic linker will connect the object only once to the process.

Names in the dependency list are copies either of the D T _ S O N A M E strings or the
path names of the shared objects used to build the object file. For example, if the
link editor builds an executable file using one shared object with a D T _ S O N A M E
entry of l i b 1 and another shared object library with the path name
/ u s r / l i b / l i b 2, the executable file will contain l i b 1 and / u s r / l i b / l i b 2 in its
dependency list.

If a shared object name has one or more slash (/) characters anywhere in the
name, such as / u s r / l i b / l i b 2 above or d i r e c t o r y / f i l e, the dynamic linker
uses that string directly as the path name. If the name has no slashes, such as
l i b 1 above, three facilities specify shared object path searching, with the follow-
ing precedence.

First, the dynamic array tag D T _ R P A T H may give a string that holds a list of
directories, separated by colons (:). For example, the string
/ h o m e / d i r / l i b : / h o m e / d i r 2 / l i b : tells the dynamic linker to search first
the directory / h o m e / d i r / l i b, then / h o m e / d i r 2 / l i b, and then the current
directory to find dependencies.

Second, a variable called L D _ L I B R A R Y _ P A T H in the process environment [see X
the function e x e c] may hold a list of directories as above, optionally fol-
lowed by a semicolon (;) and another directory list. The following values
would be equivalent to the previous example:

L D _ L I B R A R Y _ P A T H = / h o m e / d i r / l i b : / h o m e / d i r 2 / l i b :

L D _ L I B R A R Y _ P A T H = / h o m e / d i r / l i b ; / h o m e / d i r 2 / l i b :

L D _ L I B R A R Y _ P A T H = / h o m e / d i r / l i b : / h o m e / d i r 2 / l i b : ;

All L D _ L I B R A R Y _ P A T H directories are searched after those from D T _ R P A T H.
Although some programs (such as the link editor) treat the lists before and
after the semicolon differently, the dynamic linker does not. Nevertheless,
the dynamic linker accepts the semicolon notation, with the semantics
described above.

Finally, if the other two groups of directories fail to locate the desired
library, the dynamic linker searches / u s r / l i b.

5-20 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 93



NOTE

For security, the dynamic linker ignores environmental search specifications
(such as L D _ L I B R A R Y _ P A T H) for set-user and set-group ID programs. It does, M
however, search D T _ R P A T H directories and / u s r / l i b. The same restriction M
may be applied to processes that have more than minimal privileges on sys-
tems with installed extended security systems.

Global Offset Table (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Procedure Linkage Table (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Hash Table

A hash table of E l f 3 2 _ W o r d objects supports symbol table access. Labels appear
below to help explain the hash table organization, but they are not part of the
specification.

Figure 5-11: Symbol Hash Table
_ _____________________

n b u c k e t_ _____________________
n c h a i n_ _____________________

b u c k e t [ 0 ]
. . .

b u c k e t [ n b u c k e t - 1 ]_ _____________________
c h a i n [ 0 ]
. . .

c h a i n [ n c h a i n - 1 ]_ _____________________ 





















Dynamic Linking 5-21

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 94



The b u c k e t array contains n b u c k e t entries, and the c h a i n array contains n c h a i n
entries; indexes start at 0. Both b u c k e t and c h a i n hold symbol table indexes.
Chain table entries parallel the symbol table. The number of symbol table entries
should equal n c h a i n; so symbol table indexes also select chain table entries. A
hashing function (shown below) accepts a symbol name and returns a value that
may be used to compute a b u c k e t index. Consequently, if the hashing function
returns the value x for some name, b u c k e t [x% n b u c k e t ] gives an index, y , into
both the symbol table and the chain table. If the symbol table entry is not the one
desired, c h a i n [y] gives the next symbol table entry with the same hash value.
One can follow the c h a i n links until either the selected symbol table entry holds
the desired name or the c h a i n entry contains the value S T N _ U N D E F.

Figure 5-12: Hashing Function

u n s i g n e d l o n g
e l f _ h a s h ( c o n s t u n s i g n e d c h a r * n a m e )
{

u n s i g n e d l o n g h = 0 , g ;

w h i l e ( * n a m e )
{

h = ( h < < 4 ) + * n a m e + + ;
i f ( g = h & 0 x f 0 0 0 0 0 0 0 )

h ̂  = g > > 2 4 ;
h & = ̃  g ;

}
r e t u r n h ;

}

Initialization and Termination Functions

After the dynamic linker has built the process image and performed the reloca-
tions, each shared object gets the opportunity to execute some initialization code.
All shared object initializations happen before the executable file gains control.

Before the initialization code for any object A is called, the initialization code for M
any other objects that object A depends on are called. For these purposes, an M
object A depends on another object B, if B appears in A’s list of needed objects M
(recorded in the DT_NEEDED entries of the dynamic structure). The order of ini- M
tialization for circular dependencies is undefined. M

5-22 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 95



The initialization of objects occurs by recursing through the needed entries of each M
object. The initialization code for an object is invoked after the needed entries for M
that object have been processed. The order of processing among the entries of a M
particular list of needed objects is unspecified. M

NOTE M
Each processor supplement may optionally further restrict the algorithm used MM
to determine the order of initialization. Any such restriction, however, may not MM
conflict with the rules described by this specification. MM

The following example illustrates two of the possible correct orderings which can M
be generated for the example NEEDED lists. In this example the a.out is depen- M
dent on b, d, and e. b is dependent on d and f, while d is dependent on e and g. M
From this information a dependency graph can be drawn. The above algorithm M
on initialization will then allow the following specified initialization orderings M
among others.

Dynamic Linking 5-23

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 96



Initialization Ordering Example

5-24 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 97



Figure 5-13: Initialization Ordering Example

a.out b d a.out

b d e

d f g

e

b d e

f g

NEEDED Lists Dependency Graph

e g d f b a.out

g f e d b a.out

Init Orderings:

Dynamic Linking 5-25

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 98



Similarly, shared objects may have termination functions, which are executed with
the function a t e x i t mechanism after the base process begins its termination X
sequence. The order in which the dynamic linker calls termination functions is the M
exact reverse order of their corresponding initialization functions. If a shared M
object has a termination function, but no initialization function, the termination M
function will execute in the order it would have as if the shared object’s initializa- M
tion function was present. The dynamic linker ensures that it will not execute any M
initialization or termination functions more than once.

Shared objects designate their initialization and termination functions through the
D T _ I N I T and D T _ F I N I entries in the dynamic structure, described in ‘‘Dynamic
Section’’ above. Typically, the code for these functions resides in the . i n i t and
. f i n i sections, mentioned in ‘‘Sections’’ of Chapter 4.

NOTE

Although the function a t e x i t termination processing normally will be done, it
is not guaranteed to have executed upon process death. In particular, the X
process will not execute the termination processing if it calls _ e x i t [see the
function e x i t] or if the process dies because it received a signal that it neither
caught nor ignored.

The dynamic linker is not responsible for calling the executable file’s . i n i t sec- M
tion or registering the executable file’s . f i n i section with the function a t e x i t. M
Termination functions specified by users via the a t e x i tmechanism must be exe- M
cuted before any termination functions of shared objects.

5-26 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997

File: chap5
386:adm.book:sum

Page: 99


