4 OBJECT FILES

Introduction 4-1
File Format 4-1
Data Representation 4-3
ELF Header 4-4
ELF Identification 4-7
Machine Information (Processor-Specific) 4-9
Sections 4-10
Special Sections 4-17
String Table 4-21
Symbol Table 4-22
Symbol Values 4-26
Relocation 4-27
Relocation Types (Processor-Specific) 4-28
Table of Contents i
DRAFT COPY
March 18, 1997
File: Cchap4

386:adm.book:sum

Page: 44

Introduction

This chapter describes the object file format, called ELF (Executable and Linking

Format). There are three main types of object files.

m A reocatablefile holds code and data suitable for linking with other object
filesto create an executable or a shared object file.

m An executablefile holds a program suitable for execution; the file specifies
how the function exec creates a program’s process image.

m A shared object file holds code and data suitable for linking in two contexts.

First, thelink editor [seel d (SD_CMD)] may processit with other rel ocat-
able and shared object files to create another object file. Second, the

dynamic linker combines it with an executable file and other shared objects

to create a process image.

Created by the assembler and link editor, object files are binary representations of

programs intended to execute directly on a processor. Programs that require
other abstract machines, such as shell scripts, are excluded.

After the introductory material, this chapter focuses on the file format and how it

pertains to building programs. Chapter 5 also describes parts of the object file,
concentrating on the information necessary to execute a program.

File Format

Object files participate in program linking (building a program) and program exe-
cution (running a program). For convenience and efficiency, the object file format
provides paralld views of afile' s contents, reflecting the differing needs of these

activities. Figure 4-1 shows an object file' s organization.

Introduction

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 45

4-1

Figure 4-1: Object File Format

Linking View Execution View
U ELF header 0 0 ELF header 0
EFrogram header table g EProgram header table g
g optional 0o O
O i o d O
& Sec-'u.c.)n L 0 0O Segment 1 0
[1 [Il
E Sec_tl_(?n L B B Segment 2 B
H 1 B {1
O o d O
USection header table U U Section header table U
H H 3 optional H

An ELF header resides at the beginning and holds a‘‘road map’’ describing the
file's organization. Sections hold the bulk of object file information for the linking
view: instructions, data, symbol table, relocation information, and so on. Descrip-
tions of special sections appear later in the chapter. Chapter 5 discusses segments
and the program execution view of thefile.

A programheader table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program
header table; relocatable files do not need one. A section header table contains infor-
mation describing the file' s sections. Every section has an entry in the table; each
entry givesinformation such as the section name, the section size, and so on. Files
used during linking must have a section header table; other object files may or
may not have one.

Although the figure shows the program header table immediately after the
NoTE | ELF header, and the section header table following the sections, actual files
may differ. Moreover, sections and segments have no specified order. Only
the ELF header has a fixed position in the file.

4-2 OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 46

Data Representation

As described here, the object file format supports various processors with 8-bit
bytes and 32-bit architectures. Nevertheless, it isintended to be extensible to
larger (or smaller) architectures. Object files therefore represent some control data
with a machine-independent format, making it possible to identify object files and
interpret their contents in acommon way. Remaining datain an object file use the
encoding of the target processor, regardless of the machine on which the file was
created.

Figure 4-2: 32-Bit Data Types

Name Size Alignment Purpose
B f 32_Addr g O 4 UuUnsigned program address
Hf32 Hal f g 2 B 2 DUnsigned medium integer
Hf32 Of 04 0 4 nUnsigned file offset
B f32_Sword 04 0O 4 OSigned large integer
H f32 Wrd 04 0O 4 OUnsigned large integer
unsi gned char E 1 E 1 EUnsigned small integer

All data structures that the object file format defines follow the ‘‘ natural’’ size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force structure
sizesto amultiple of 4, and so on. Data aso have suitable alignment from the
beginning of thefile. Thus, for example, a structure containing an B f 32_Addr
member will be aligned on a4-byte boundary within the file.

For portability reasons, EL F uses no bit-fields.

Introduction 4-3

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 47

ELF Header

Some object file control structures can grow, because the EL F header contains their
actual sizes. If the object file format changes, a program may encounter control
structures that are larger or smaller than expected. Programs might therefore
ignore ‘‘extra’ information. The treatment of ‘‘missing’’ information depends on

context and will be specified when and if extensions are defined.

Figure 4-3: ELF Header

f

N

#define El _NIDENT 16
typedef struct {
unsi gned char e_ident[El _N DENT];
Hf32 Hal f e_type;
Hf32_Hal f e_nachi ne;
B f32_Wrd e_versi on;
H f 32_Addr e_entry;
B f32 Of e_phoff;
Bf32_Cf e_shof f;
B f32_Wrd e_flags;
B f32_Hal f e_ehsi ze;
B f32_Hal f e_phent si ze;
B f32_Hal f e_phnum
B f32_Hal f e_shent si ze;
B f32_Hal f e_shnum
B 32 Hal f e_shst rndx;
} B f32_Ehdr; J
e _ident Theinitial bytes mark the file as an object file and provide

machine-independent data with which to decode and interpret
thefile' s contents. Complete descriptions appear below, in “*ELF

Identification.”’

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 48

OBJECT FILES

e type This member identifies the object file type.

Name Vaue Meaning
ET NONE U 0 UNofiletype
ET_REL E 1 URdocaablefile
ET_EXEC [2 Executablefile
ET_DYN 0 3 [Shared object file
ET_CCRE ad 4 [Corefile

ET_LOPROC Uoxff00 UProcessor-specific

ET_H PRCC EOxffff EProcessor—specific

Although the core file contents are unspecified, type ET_OCRE is
reserved to mark thefile. Vauesfrom ET_LCPRCOC through

ET_H PRCOC (inclusive) are reserved for processor-specific seman-
tics. If meanings are specified, the processor supplement explains
them. Other values are reserved and will be assigned to new
object file types as necessary.

e_nachi ne This member’ s value specifies the required architecture for an
individual file.
Name Vaue Meaning
EM NONE U 0 UNo machine
EM NB2 g 1 SAT&T WE 32100
EM SPARC 0 2 gSPARC
EM 386 0 3 intel 80386
EM 68K O 4 [OMotorola 68000
EM 88K U 5 UMotorola 88000
EM 860 g 7 Slntel 80860
EM M PS 0 8 DMIPS RS3000 Big-Endian

EMMPS R4 BE 10 OMIPS R$4000 Big-Endian
RESERVED Ell— 16 EReﬁerved for future use

Other values are reserved and will be assigned to new machines
as necessary. Processor-specific ELF names use the machine name
to distinguish them. For example, the flags mentioned below use
the prefix EF_; aflag named W DGET for the EM XYZ machine
would be called EF_XYZ W DCET.

e_version This member identifies the object file version.
ELF Header 4-5
DRAFT COPY
March 18, 1997
File: chap4

386:adm.book:sum

Page: 49

mmm

e entry

e _phof f

e shoff

e flags

e _ehsi ze

e phentsi ze

e_phnum

e _shentsi ze

e_shnum

e_shst r ndx

4-6

Name Vaue M eaning
EV_NONE U o Uinvalidversion

EV_CURRENT E 1 BCurrent version

Thevauel signifiesthe origina file format; extensions will create
new versions with higher numbers. The value of EV_COURRENT,
though given as 1 above, will change as necessary to reflect the
current version number.

This member gives the virtual address to which the system first
transfers control, thus starting the process. If thefile has no asso-
ciated entry point, this member holds zero.

This member holds the program header table s file offset in bytes.
If the file has no program header table, this member holds zero.

This member holds the section header tabl€' sfile offset in bytes. If
the file has no section header table, this member holds zero.

This member holds processor-specific flags associated with the
file. Flag namestake the form EF_machine flag. See‘‘Machine
Information’” in the processor supplement for flag definitions.

This member holdsthe ELF header’ s size in bytes.

This member holds the size in bytes of one entry in thefile' s pro-
gram header table; all entries are the same size.

This member holds the number of entries in the program header
table. Thusthe product of e_phent si ze and e_phnumgivesthe
table' ssizein bytes. If afile has no program header table,
e_phnumholds the value zero.

This member holds a section header’ s size in bytes. A section
header is one entry in the section header table; all entries are the
samesize.

This member holds the number of entries in the section header
table. Thusthe product of e_shent si ze and e_shnumgivesthe
section header table’ ssizein bytes. If afile has no section header
table, e_shnumholds the value zero.

This member holds the section header table index of the entry
associated with the section name string table. If the file hasno
section name string table, this member holds the value

SHN UNDEF. See‘‘Sections’ and ‘* String Table” below for more
information.

OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 50

ELF Identification

As mentioned above, ELF provides an object file framework to support multiple
processors, multiple data encodings, and multiple classes of machines. To support
this object file family, the initial bytes of the file specify how to interpret thefile,
independent of the processor on which the inquiry is made and independent of
the file' sremaining contents.

Theinitial bytes of an ELF header (and an object file) correspond to thee_i dent
member.

Figure 4-4: e_ident[] Identification Indexes

Name Vaue Purpose
B M U 0 UFileidentification
B _MAGL E 1 UFileidentification
B M& 0 2 pFileidentification
B MG 0 3 pFileidentification
Bl _CLASS O 4 [OFileclass
El _DATA U 5 Upataencoding
Bl VERS ON E 6 UFileverson
B _PAD 0o 7 pStartof padding bytes
El _N DENT B 16 ESizeof e ident[]

These indexes access bytes that hold the following values.

Bl _MAQD to El _NAG3
A file' sfirst 4 bytes hold a‘* magic number,”” identifying the file
asan ELF object file.

Name Vaue Position

ELFMAQ Uox7f Ue ident[Bl _MAQD]
ELFMAGL g ' He ident[Bl MG
ELFMM@ 'L pe_ident[El _MAG]
ELFMAG3 §'F pge_ident[E MG

ELF Header 4-7

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 51

El _CLASS

El _DATA

El _VERS ON

The next byte, e_i dent [El _CQLASS] , identifiesthefile’' s class, or
capacity.
Name Value Meaning
ELFOLASSNONE U 0 Uinvalidclass
ELFOASS32 2 1 U32hit objects

ELFOASS64 O 2 O6A-bitobjects

Thefile format is designed to be portable among machines of
various sizes, without imposing the sizes of the largest machine
onthe smallest. Class ELFALASS32 supports machines with files
and virtual address spaces up to 4 gigabytes; it usesthe basic
types defined above.

ClassELFOLASS64 isreserved for 64-bit architectures. Its appear-
ance here shows how the object file may change, but the 64-bit

format is otherwise unspecified. Other classes will be defined as
necessary, with different basic types and sizes for object file data.

Bytee ident[El _DATA] specifiesthe data encoding of the
processor-specific datain the object file. The following encodings
are currently defined.

Name Vaue Meaning

ELFDATANONE U 0 Ulnvalid data encoding

ELFDATAZLSBS 1 BSeebelow
ELFDATAMBB 2 [Seebdow

More information on these encodings appears below. Other
values are reserved and will be assigned to new encodings as
necessary.

Bytee_ident[El _VERSI O\ specifiesthe ELF header version
number. Currently, this value must be EV_CURRENT, as explained
abovefor e_version.

This value marks the beginning of the unused bytesine_i dent .
These bytes are reserved and set to zero; programs that read
object files should ignore them. The vaue of El _PAD will change
in the future if currently unused bytes are given meanings.

A file€' s data encoding specifies how to interpret the basic objectsin afile. As
described above, class ELFOLASS32 files use objects that occupy 1, 2, and 4 bytes.
Under the defined encodings, objects are represented as shown below. Byte
numbers appear in the upper left corners.

4-8

OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 52

Encoding ELFDATA2L SB specifies 2's complement values, with the least significant

byte occupying the lowest address.

Figure 4-5: Data Encoding ELFDATA2LSB

oxo1 | o1
0 1
0x0102 02 01
0 1 2
0x01020304 04 03 02 01

Encoding ELFDATA2IVBB specifies 2' s complement values, with the most significant

byte occupying the lowest address.

Figure 4-6: Data Encoding ELFDATA2VEB

oxo1 | o1
0 1
0x0102 01 02
0 1 2
0x01020304 01 02 03 04

Machine Information (Processor-Specific)

NOTE | the desired processor describes the details.

ELF Header

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 53

This section requires processor-specific information. The ABI supplement for

Sections

An object file' s section header table lets one locate all the file' s sections. The sec-
tion header tableisan array of H f 32_Shdr structures as described below. A sec-
tion header table index is a subscript into thisarray. The ELF header’se_shof f
member gives the byte offset from the beginning of the file to the section header
table; e_shnumtells how many entries the section header table contains;

e_shent si ze givesthe sizein bytes of each entry.

Some section header table indexes are reserved; an object file will not have sec-
tions for these special indexes.

Figure 4-7: Special Section Indexes

Name Value
SHN_UNDEF U 0
SHN LCRESERVE BOxf f00

SHNLOPROC [10xff 00
SHN HPROC [Oxf f 1f
SHN_ABS OOxfff1
SHN_OOVMIN Uoxfff2
SHN H RESERVE SOxffff

SHN UNDEF This value marks an undefined, missing, irrelevant, or other-
wise meaningless section reference. For example, a symbol
‘‘defined’’ relative to section number SHN_UNDEF isan
undefined symbol.

Although index O is reserved as the undefined value, the section header table

NOTE | contains an entry for index 0. That is, if the e_shnummember of the ELF

header says a file has 6 entries in the section header table, they have the

‘ indexes 0 through 5. The contents of the initial entry are specified later in this
section.

SHN LCRESERVE Thisvaue specifies the lower bound of the range of reserved
indexes.

SHN LCPRCCthrough SHN H PRCC
Valuesin thisinclusive range are reserved for processor-
specific semantics. |If meanings are specified, the processor
supplement explains them.

4-10 OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 54

SHN_ABS This value specifies absolute values for the corresponding
reference. For example, symbols defined relative to section
number SHN_ABS have absolute values and are not affected by
relocation.

SHN_ GOWON Symbols defined relative to this section are common symbols,
such as FORTRAN GCOMMON or unallocated C external vari-
ables.

SHN H RESERVE This value specifies the upper bound of the range of reserved
indexes. The system reserves indexes between
SHN LCRESERVE and SHN_H RESERVE, inclusive; the values do
not reference the section header table. That is, the section
header table does not contain entries for the reserved indexes.

Sections contain all information in an object file, except the ELF header, the pro-
gram header table, and the section header table. Moreover, object files' sections
satisfy several conditions.

m Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

m Each section occupies one contiguous (possibly empty) sequence of bytes
within afile.

m Sectionsin afile may not overlap. No byte in afile residesin more than one
section.

m An object file may have inactive space. The various headers and the sec-
tions might not ‘‘ cover’’ every bytein an object file. The contents of the
inactive data are unspecified.

A section header has the following structure.

Sections 4-11

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 55

Figure 4-8: Section Header

f

typedef struct {
B f32_Wrd sh_nane;
B f32_Wrd sh_type;
B f32_Wrd sh_fl ags;
H f32_Addr sh_addr;
Bf32 Of sh_of fset;
Hf32_Wrd sh_si ze;
Hf32_Wrd sh_l'ink;
B f32_Wrd sh_info;
B f32_Wrd sh_addral i gn;
B f32_Wrd sh_ent si ze;
} B f32_Shdr;

N

)

sh_nare

sh_type

sh_fl ags

sh_addr

sh_of f set

sh_si ze

sh_link

4-12

This member specifies the name of the section. Itsvalueisan
index into the section header string table section [see ‘‘ String
Table'’ below], giving the location of a null-terminated string.

This member categorizes the section’ s contents and semantics.
Section types and their descriptions appear below.

Sections support 1-bit flags that describe miscellaneous attri-
butes. Flag definitions appear below.

If the section will appear in the memory image of a process,
this member gives the address at which the section’ sfirst byte
should reside. Otherwise, the member contains O.

This member’ s value gives the byte offset from the beginning
of thefileto the first byte in the section. One section type,
SHT_NCBI TS described below, occupies no space in thefile,
and itssh_of f set member locates the conceptual placement
in thefile.

This member gives the section’ s sizein bytes. Unless the sec-
tion type is SHT_NCBI TS, the section occupiessh_si ze bytes
inthefile. A section of type SHT_NCBI TS may have a non-zero
size, but it occupies no spacein thefile.

This member holds a section header table index link, whose
interpretation depends on the section type. A table below
describes the values.

OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 56

sh_info

sh_addral i gn

sh_entsi ze

This member holds extrainformation, whose interpretation
depends on the section type. A table below describes the
values.

Some sections have address alignment constraints. For exam-
ple, if a section holds a doubleword, the system must ensure
doubleword alignment for the entire section. That is, the value
of sh_addr must be congruent to O, modulo the value of
sh_addral i gn. Currently, only O and positive integral powers
of two are allowed. Vaues 0 and 1 mean the section has no
alignment constraints.

Some sections hold atable of fixed-size entries, such asasym-
bol table. For such a section, this member givesthesizein
bytes of each entry. The member contains O if the section does
not hold atable of fixed-size entries.

A section header’ ssh_t ype member specifies the section’ s semantics.

Figure 4-9: Section Types, sh_type

Name Value
SHT_NULL
SHT_PROGEBI TS
SHT_SYMIAB
SHT_STRTAB
SHT_RELA
SHT_HASH
SHT_DYNAM C
SHT_NOTE
SHT_NCBI TS
SHT REL
SHT SHLIB 10
SHT_DYNSYM 11
SHT_LOPROC ~ 50x70000000
SHT HPROC [jOx7fffffff
SHT _LOUSER [J0x80000000
SHT_H USER EOxffffffff

OodoooOoooooooogono
O©CoO~NOYUITD WNPEFO

SHT_NULL

Sections

This value marks the section header as inactive; it does not
have an associated section. Other members of the section
header have undefined values.

4-13

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 57

SHT_PROEBITS The section holds information defined by the program, whose
format and meaning are determined solely by the program.

SHT_SYMI'AB and SHT_DYNSYM
These sections hold a symbol table. Currently, an object file
may have only one section of each type, but thisrestriction
may be relaxed in the future. Typically, SHT _SYMI'AB provides
symbolsfor link editing, though it may also be used for
dynamic linking. Asacomplete symbol table, it may contain
many symbols unnecessary for dynamic linking. Conse-
quently, an object file may also contain a SHT _DYNSYM section,
which holds aminimal set of dynamic linking symbols, to save
space. See''Symbol Table'’ below for details.

SHT_STRTAB The section holds a string table. An object file may have multi-
ple string table sections. See** String Table'’ below for details.
SHT_RELA The section holds relocation entries with explicit addends, such

astypeH f 32_Rel a for the 32-bit class of object files. An
object file may have multiple relocation sections. See‘‘Rdoca
tion’’ below for details.

SHT_HASH The section holds a symbol hash table. All objects participating
in dynamic linking must contain a symbol hash table.
Currently, an object file may have only one hash table, but this
restriction may be relaxed in the future. See‘‘Hash Table’ in
Chapter 5 for details.

SHT_DYNAM C The section holds information for dynamic linking. Currently,
an object file may have only one dynamic section, but this res-
triction may be relaxed in the future. See‘‘Dynamic Section’’
in Chapter 5 for details.

SHT_NOTE The section holds information that marks the file in some way.
See *Note Section’’ in Chapter 5 for details.

SHT_NCBI TS A section of this type occupies no space in the file but other-
wiseresembles SHT _PROEBI TS. Although this section contains
no bytes, thesh_of f set member contains the conceptual file
offset.

SHT_REL The section holds relocation entries without explicit addends,
such astypeH f 32_Rel for the 32-bit class of object files. An
object file may have multiple relocation sections. See‘‘Redoca
tion’’ below for details.

4-14 OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 58

SHT _SH.IB This section typeis reserved but has unspecified semantics.
Programs that contain a section of this type do not conform to
the ABI.

SHT_LCPRCCthrough SHT_H PROC
Valuesin thisinclusive range are reserved for processor-
specific semantics. |If meanings are specified, the processor
supplement explains them.

SHT_LQUSER This value specifies the lower bound of the range of indexes
reserved for application programs.

SHT_H USER This value specifies the upper bound of the range of indexes
reserved for application programs. Section types between
SHT_LOUSER and SHT_H USER may be used by the application,
without conflicting with current or future system-defined sec-
tion types.

Other section type values are reserved. As mentioned before, the section header
for index O (SHN_UNDEF) exists, even though the index marks undefined section
references. This entry holds the following.

Figure 4-10: Section Header Table Entry: Index 0

Name Vaue Note
sh_nane 0 0 UNo name
sh_type B SHT_NULL Ol hactive
sh_fl ags 0 0 No flags
sh_addr 0 0 No address
sh_of f set O 0 ONo file offset
sh_si ze 0 0 UNo size
sh_l'ink BSI—N_U\DEF UNo link information
sh_info 0 0 No auxiliary information
sh_addralign 0 No aignment
sh_entsi ze B 0 ENO entries

A section header’ssh_f | ags member holds 1-bit flags that describe the section’s
attributes. Defined values appear below; other values are reserved.

Sections 4-15

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 59

Figure 4-11: Section Attribute Flags, sh_f | ags

Name Value
SHF WR TE U 0x1
SHE ALLCC g 0x2
SHE_EXEQ NSTR 0x4

SHF_NVASKPRCC EOXf 0000000

If aflag bitissetinsh_fl ags, theattributeis'‘on’’ for the section. Otherwise, the
attributeis*‘off’’ or does not apply. Undefined attributes are set to zero.

SH WR TE The section contains data that should be writable during pro-
cess execution.

SH- ALLCC The section occupies memory during process execution.
Some control sections do not reside in the memory image of
an object file; this attribute is off for those sections.

SH- EXECI NSTR The section contains executable machine instructions.

SHF_MASKPROC All bitsincluded in this mask are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

Two membersin the section header, sh_| i nk and sh_i nf o, hold special informa-
tion, depending on section type.

4-16 OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 60

Figure 4-12: sh_l i nk and sh_i nf o Interpretation

sh_type sh_li nk sh_info
SHT_DYNAM C UThe section header index of 10
gthe string table used by g
mentriesin the section. 0
SHT _HASH OThe section header index of [0
Uthe symbol tabletowhich U
Uthe hash table applies. J
SHT REL EThe section header index of EThe section header index of
SHT RELA Othe associated symbol table. [Othe section to which the
O Urelocation applies.
SHT_SYMIAB EThe section header index of EOne greater than the sym-
SHT_DYNSYM [jthe associated string table. [Jbol table index of the last
O Olocal symbol (binding
O USTB_LOCAL).
other ESI—N_LNZEF 50

Special Sections

Various sections hold program and control information. Sectionsin thelist below
are used by the system and have the indicated types and attributes.

Figure 4-13: Special Sections

Name Type Attributes
. bss USHT NCBITS USHF ALLOC+SHF WR TE
. conment DSI—FI'_PR(IEBI TS ohone
.data OSHT_PROEBI TS SH_ALLCC+SH-_WRI TE
.datal OSHT_PROEBI TS OSHF_ALLCC+SHF WRI TE
. debug OSHT_PROGEBI TS none
.dynamic USHT DYNAM C Useebelow
.dynstr ESHI’_STRTAB BSI—F_ALL@
.dynsym 5SHT_DYNSYM = SHF_ALLCC
Lfini OSHT_PROEBI TS SHF_ALLCC+ SHF_EXEQ NSTR
. got OSHT PRO®BI TS Oseebeow
Sections 4-17
DRAFT COPY
March 18, 1997
File: chap4

386:adm.book:sum

Page: 61

Figure 4-13: Special Sections (continued)

. hash OSHT_HASH
init USHT PROGBI TS
.interp ESHT_PR(IEBI TS
.line OSHT_PRO&EI TS
.hote OSHT_NOTE
.plt OSHT_PROGEBI TS
.rel name USHT REL

. rel aname ESHI’_RELA
.rodat a SHT_PROEI TS
.rodatal [SHT _PRO&E®BITS
.shstrtab [OSHT STRTAB
.strtab USHT_STRTAB
.syntab ESHI’_SYI\/II’AB
.text

FSHT_PROGBI TS

OSHF ALLCC
USHFE ALLOC+SHE EXEQ NSTR
see below
fjnhone
[Jnone
Osee below
Usee below
D%e below
SHE_ALLOC
OSH-_ALLCC
[Onone
Usee below
Usee below

SSHFE_ALLOC+SHE_EXEQI NSTR

. bss

This section holds uninitialized data that contribute to the

program’s memory image. By definition, the system initializes the
data with zeros when the program begins to run. The section occu-
pies no file space, asindicated by the section type, SHT _NCBI TS.

. comment

.dataand. dat al

This section holds version control information.

These sections hold initialized data that contribute to the program’s

memory image.

This section holds information for symbolic debugging. The con-

tents are unspecified. All section names with the prefix . debug are

This section holds dynamic linking information. The section’s attri-

butes will include the SH=_ALLCOC bit. Whether the SH= WR TE bitis
set is processor specific. See Chapter 5 for more information.

This section holds strings needed for dynamic linking, most com-

monly the strings that represent the names associated with symbol

This section holds the dynamic linking symbol table, as‘‘ Symbol

Table’ describes. See Chapter 5 for more information.

. debug
reserved for future use in the ABI.
. dynam c
.dynstr
table entries. See Chapter 5 for more information.
. dynsym
4-18

OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 62

Cfini

. got

. hash

.init

.interp

.line

.hote

.pl't

This section holds executable instructions that contribute to the pro-
cesstermination code. That is, when a program exits normally, the
system arranges to execute the code in this section.

This section holds the global offset table. See‘* Coding Examples”’
in Chapter 3, ‘* Special Sections'’ in Chapter 4, and ** Global Offset
Table’ in Chapter 5 of the processor supplement for more informa-
tion.

This section holds a symbol hash table. See*‘Hash Table'’ in
Chapter 5 for more information.

This section holds executable instructions that contribute to the pro-
cessinitialization code. That is, when a program starts to run, the
system arranges to execute the code in this section before calling the
main program entry point (called mai n for C programs).

This section holds the path name of a program interpreter. If the
file has aloadable segment that includes the section, the section’s
attributes will include the SH=_ALLQC bit; otherwise, that bit will be
off. See Chapter 5 for more information.

This section holds line number information for symbolic debug-
ging, which describes the correspondence between the source pro-
gram and the machine code. The contents are unspecified.

This section holds information in the format that ‘* Note Section’’ in
Chapter 5 describes.

This section holds the procedure linkage table. See‘* Specid Sec-
tions’ in Chapter 4 and ** Procedure Linkage Table'’ in Chapter 5 of
the processor supplement for more information.

.rel nameand. r el aname

.rodataand.

Sections

These sections hold relocation information, as‘* Relocation’” below
describes. If the file has aloadable segment that includes reloca-
tion, the sections' attributes will include the SH=_ALLCC bit; other-
wise, that bit will be off. Conventionally, nameis supplied by the
section to which the relocations apply. Thus arelocation section for
. text normally would havethename.rel .text or.rel a.text.

r odat al

These sections hold read-only data that typically contribute to a
non-writable segment in the processimage. See*‘ Program Header™’
in Chapter 5 for more information.

4-19

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 63

.shstrtab
.strtab

. symt ab

.text

This section holds section names.

This section holds strings, most commonly the strings that
represent the names associated with symbol table entries. If thefile
has a loadable segment that includes the symboal string table, the
section’ s attributes will include the SH=_ALLCC bit; otherwise, that
bit will be off.

This section holds a symboal table, as‘* Symbol Table'’ in this chapter
describes. If the file has aloadable segment that includes the sym-
bol table, the section’ s attributes will include the SH=_ALLCC bit;
otherwise, that bit will be off.

This section holds the *‘text,”” or executable instructions, of a pro-
gram.

Section names with adot (.) prefix are reserved for the system, although applica-
tions may use these sections if their existing meanings are satisfactory. Applica-
tions may use names without the prefix to avoid conflicts with system sections.
The object file format lets one define sections not in the list above. An object file
may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name
should be taken from the architecture names used for e_machi ne. For instance
.FOO.psect is the psect section defined by the FOO architecture. Existing exten-
sions are called by their historical names.

4-20

Pre-existing Extensions

.sdata . tdesc

. sbss dita
dit8 .reginfo
. gptab liblist
.conflict

For information on processor-specific sections, see the ABI supplement for
NoTE | the desired processor.

OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 64

OoOoonDo o googooo

String Table

String table sections hold null-terminated character sequences, commonly called
strings. The object file uses these strings to represent symbol and section names.
One references a string as an index into the string table section. Thefirst byte,
which isindex zero, is defined to hold anull character. Likewise, astring table’'s
last byte is defined to hold a null character, ensuring null termination for all
strings. A string whose index is zero specifies either no name or anull name,
depending on the context. An empty string table section is permitted; its section
header’ ssh_si ze member would contain zero. Non-zero indexes are invalid for
an empty string table.

A section header’ ssh_nanme member holds an index into the section header string
table section, as designated by thee_shst r ndx member of the ELF header. The
following figures show a string table with 25 bytes and the strings associated with
various indexes.

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 o Un Ua Om Oe O, Oyo Ov Og Oy
10 i pga gb g! e 0\0 ga ob gl e
20 B\0 A\0 Ax Bx B\o§ H H H B

mOooOoO

Figure 4-14: String Table Indexes
Index String

0 Unone

1 Dnama.

7 DVari abl e
11 pable
16 [Oable

24 Hnull string

Asthe example shows, a string table index may refer to any byte in the section. A
string may appear more than once; references to substrings may exist; and asingle
string may be referenced multiple times. Unreferenced strings also are allowed.

String Table 4-21

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 65

Symbol Table

An object file's symbol table holds information needed to locate and relocate a
program’ s symbolic definitions and references. A symbol table index is a sub-
script into thisarray. Index O both designates the first entry in the table and serves
as the undefined symbol index. The contents of theinitial entry are specified later
in this section.

Name Vaue
STN_UNDEF E 0

A symbol table entry has the following format.

Figure 4-15: Symbol Table Entry

s N

typedef struct {
B f32 Wrd st _nane;
H f32_Addr st _val ue;
Hf32 Wrd st_si ze;
unsi gned char st_info
unsi gned char st _ot her
Hf32 Hal f st _shndx
K} B f32_Sym J
st _nane This member holds an index into the object file's symbol string

table, which holds the character representations of the symbol
names. If the valueis non-zero, it represents a string table index
that gives the symbol name. Otherwise, the symbol table entry

has no name.
External C symbols have the same names in C and object files’ symbol tables. 0O
NOTE
st _val ue This member gives the value of the associated symbol. Depend-
ing on the context, this may be an absolute value, an address, and
S0 on; details appear below.
4-22 OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 66

st_size Many symbols have associated sizes. For example, adataobject’s
size isthe number of bytes contained in the object. This member
holds O if the symbol has no size or an unknown size.
st_info This member specifies the symbol’ s type and binding attributes.
A list of the values and meanings appears below. The following
code shows how to manipulate the values.
#define ELF32_ST_BIND(i) ((i)>>4)
#def i ne ELF32_ST_TYPE(i) ((i)&0xf)
#def i ne ELF32_ST_INFQ(b,t) (((b)<<d)+((t)&0xf))
st _ot her This member currently holds 0 and has no defined meaning.
st _shndx Every symbol table entry is‘‘defined’’ in relation to some section;

this member holds the relevant section header table index. As
Figure 4-7 and the related text describe, some section indexes
indicate special meanings.

A symbol’ s binding determines the linkage visibility and behavior.

Figure 4-16: Symbol Binding, ELF32_ST_BI ND

Name Vaue
STBLocAL U o
STB_Q.CBAL B 1
STB VEAK o 2
STB LCPRCC [13
STB HPRCXC [15

STB_LOCAL

STB_GLCBAL

Symbol Table

Local symbols are not visible outside the object file containing
their definition. Local symbols of the same name may exist in
multiple files without interfering with each other.

Globa symbolsare visibleto all object files being combined. One
file' s definition of aglobal symbol will satisfy another file's
undefined reference to the same global symbol.

4-23

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 67

STB_WEAK Weak symbols resemble global symbols, but their definitions

have lower precedence.

STB_LCPRCCthrough STB_H PRCC

Valuesin thisinclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Global and weak symbols differ in two major ways.

m When the link editor combines several relocatable object files, it does not

alow multiple definitions of STB_A_.CBAL symbols with the same name. On
the other hand, if adefined global symbol exists, the appearance of a weak
symbol with the same name will not cause an error. Thelink editor honors
the global definition and ignores the weak ones. Similarly, if acommon
symbol exists (that is, a symbol whose st_shndx field holds SHN. COMMIN),
the appearance of aweak symbol with the same name will not cause an
error. Thelink editor honors the common definition and ignores the weak
Ones.

When the link editor searches archive libraries[see‘* Archive File€’ in
Chapter 7], it extracts archive members that contain definitions of undefined
global symbols. The member’ s definition may be either a global or a weak
symbol. Thelink editor does not extract archive membersto resolve
undefined weak symbols. Unresolved weak symbols have a zero value.

In each symbol table, all symbolswith STB_LOCAL binding precede the weak and
global symbols. As‘‘Sections’ above describes, asymbol table section’ssh_i nf o
section header member holds the symbol table index for the first non-local symbol.

A symbol’ stype provides a general classification for the associated entity.

Figure 4-17: Symbol Types, ELF32_ST_TYPE

Name Value
STT_NOTYPE
STT_CBIJECT
STT_FUNC
STT_SECTION
STT_FILE
STT_LCPRCC
STT_H PRCC

gwhwnNEFLO

OOoOooOooood
e

4-24

OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 68

Oooono

STT_NOTYPE The symbol’ stypeis not specified.

STT_CBIECT The symbol is associated with a data object, such as avariable,
an array, and so on.

STT_FUNC The symbol is associated with afunction or other executable
code.

STT_SECTI ON The symbol is associated with a section. Symbol table entries of
thistype exist primarily for relocation and normally have
STB_LQOCAL binding.

STT_FI LE Conventionally, the symbol’ s name gives the name of the source
file associated with the object file. A file symbol has STB_LOCAL
binding, its section index is SHN_ABS, and it precedes the other
STB_LOCAL symbolsfor thefile, if it is present.

STT_LCPRCCthrough STT_H PROC
Valuesin thisinclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Function symbols (those with type STT_FUNC) in shared object files have specia
significance. When another object file references a function from a shared object,
the link editor automatically creates a procedure linkage table entry for

the referenced symbol. Shared object symbols with types other than STT_FUNC
will not be referenced automatically through the procedure linkage table.

If asymbol’ s value refersto a specific location within a section, its section index
member, st _shndx, holds an index into the section header table. Asthe section
moves during relocation, the symbol’ s value changes as well, and references to the
symbol continueto ‘*point’’ to the same location in the program. Some special sec-
tion index values give other semantics.

SHN_ABS The symbol has an absolute value that will not change because of
relocation.

SHN_ GOWON The symbol labels a common block that has not yet been allo-
cated. The symbol’svalue gives alignment constraints, similar to
asection’ssh_addral i gn member. That is, the link editor will
alocate the storage for the symbol at an address that isa multiple
of st _val ue. The symbol’s size tells how many bytes are
required.

SHN_UNDEF This section table index means the symbol is undefined. When
the link editor combines this object file with another that defines
the indicated symboal, thisfile s references to the symbol will be
linked to the actual definition.

Symbol Table 4-25

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 69

As mentioned above, the symbol table entry for index O (STN_UNDEF) isreserved; it
holds the following.

Figure 4-18: Symbol Table Entry: Index 0

Name Value Note
st_name U 0 UNo name
st _val ue g 0 Zero value
st_size 0 No size
st info [0 JNo type, local binding
st _other 0O 0 O
st _shndx ESI—N_U\DEF %No section

Symbol Values

Symbol table entries for different object file types have dightly different interpre-
tations for thest _val ue member.

m Inrelocatablefiles, st _val ue holds alignment constraints for a symbol
whose section index is SHN. COMWON.

m Inrelocatablefiles, st _val ue holds a section offset for a defined symbol.
That is, st _val ue isan offset from the beginning of the section that
st _shndx identifies.

m |n executable and shared object files, st _val ue holds avirtual address. To
make these files' symbols more useful for the dynamic linker, the section
offset (file interpretation) gives way to avirtual address (memory interpre-
tation) for which the section number isirrelevant.

Although the symbol table values have similar meanings for different object files,
the data allow efficient access by the appropriate programs.

4-26 OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 70

Relocation

Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls afunction, the associated call
instruction must transfer control to the proper destination address at execution.
In other words, relocatabl e files must have information that describes how to
modify their section contents, thus all owing executable and shared object filesto
hold the right information for a process' s program image. Relocation entriesare

these data.

Figure 4-19: Relocation Entries

f

typedef struct {

B f 32_Addr r_of fset;
B f32_Wrd r_info;
} Bf32_Rel;

typedef struct {

B f 32_Addr r_offset;

B f32_Wrd r_info;

B f32_Sword r _addend;
} Bf32_Rela;

N

)

r_of fset

r info

Relocation

This member gives the location at which to apply the relocation
action. For arelocatable file, the value is the byte offset from the
beginning of the section to the storage unit affected by the relocation.
For an executable file or a shared object, the value is the virtual
address of the storage unit affected by the relocation.

This member gives both the symbol table index with respect to
which the rel ocation must be made, and the type of relocation to
apply. For example, acall instruction’s relocation entry would hold
the symbol table index of the function being called. If theindex is
STN_UNDEF, the undefined symbol index, the relocation uses 0 asthe
“‘symbol value.”” Relocation types are processor-specific; descrip-
tions of their behavior appear in the processor supplement. When
the text in the processor supplement refersto arelocation entry’s
relocation type or symbol table index, it means the result of applying
ELF32_R TYPE or ELF32_R _SYM, respectively, totheentry’sr _i nf o
member.

4-27

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 71

#define ELF32_R SYMi) ((i)>>8)
#define ELF32_R TYPE(i) ((unsi gned char) (i))
#define ELF32_R INFQ(s,t) (((s)<<8)+(unsigned char)(t))

r _addend Thismember specifies a constant addend used to compute the value
to be stored into the relocatable field.

As shown above, only H f 32_Rel a entries contain an explicit addend. Entries of
typeH f 32_Rel store an implicit addend in the location to be modified. Depend-
ing on the processor architecture, one form or the other might be necessary or
more convenient. Consequently, an implementation for a particular machine may
use one form exclusively or either form depending on context.

A relocation section references two other sections. a symbol table and a section to
modify. The section header’ssh_i nf o and sh_I i nk members, described in ** Sec-
tions’ above, specify these relationships. Relocation entries for different object
files have dightly different interpretations for ther _of f set member.

m Inrelocatablefiles, r_of f set holdsasection offset. That is, the relocation
section itself describes how to modify another section in the file; relocation
offsets designate a storage unit within the second section.

m |n executable and shared object files, r_of f set holdsavirtual address. To
make these files' relocation entries more useful for the dynamic linker, the
section offset (file interpretation) gives way to avirtual address (memory
interpretation).

Although the interpretation of r _of f set changes for different object filesto allow
efficient access by the relevant programs, the relocation types’ meanings stay the
same.

Relocation Types (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NOTE | the desired processor describes the details.

4-28 OBJECT FILES

DRAFT COPY
March 18, 1997
File: chap4
386:adm.book:sum

Page: 72

5 PROGRAM LOADING AND
DYNAMIC LINKING

Introduction 5-1
Program Header 5-2
Base Address 5-5
Segment Permissions 5-5
Segment Contents 5-7
Note Section 5-8
Program Loading (Processor-Specific) 5-11
Dynamic Linking 5-12
Program Interpreter 5-12
Dynamic Linker 5-13
Dynamic Section 5-14
Shared Object Dependencies 5-19
Global Offset Table (Processor-Specific) 5-21
Procedure Linkage Table (Processor-Specific) 5-21
Hash Table 5-21
Initialization and Termination Functions 5-22

Table of Contents

DRAFT COPY
March 18, 1997
File: Cchap5
386:adm.book:sum

Page: 73

Introduction

This chapter describes the object file information and system actions that create
running programs. Some information here appliesto all systems; information
specific to one processor resides in sections marked accordingly.

Executable and shared object files statically represent programs. To execute such
programs, the system uses the files to create dynamic program representations, or
processimages. Assection ‘*Virtual Address Space’’ in Chapter 3 of the processor
supplement describes, a process image has segments that hold its text, data, stack,
and so on. This chapter’s major sections discuss the following.

m Programheader. This section complements Chapter 4, describing object file
structures that relate directly to program execution. The primary data
structure, a program header table, locates segment images within the file
and contains other information necessary to create the memory image for
the program.

m Programloading. Given an object file, the system must load it into memory
for the program to run.

m Dynamiclinking. After the system loads the program, it must complete the
process image by resolving symbolic references among the object files that
compose the process.

The processor supplement defines a naming convention for ELF constants
NoTE | that have processor ranges specified. Names such as DT_, PT_, for proces-
sor specific extensions, incorporate the name of the processor:
DT_M32_SPECIAL, for example. Pre—existing processor extensions not
using this convention will be supported.

OoOoOoonO

Pre-existing Extensions

DT_JMP_REL

Introduction 5-1

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 74

Program Header

An executable or shared object file' s program header table is an array of struc-
tures, each describing a segment or other information the system needs to prepare
the program for execution. An object file segment contains one or more sections, as
*“Segment Contents’ describes below. Program headers are meaningful only for
executable and shared object files. A file specifiesits own program header size
with the ELF header’ se_phent si ze and e_phnummembers[see‘‘ELF Header’’ in
Chapter 4].

Figure 5-1: Program Header

s N

typedef struct {
B f32_Wrd p_type;
Bf32 Of p_of fset;
B f32_Addr p_vaddr;
B f 32_Addr p_paddr;
Hf32_Wrd p_filesz;
Hf32_Wrd p_mensz;
Hf32_Wrd p_fl ags;
B f32_Wrd p_align;
} BHf32_Phdr; J
_type This member tells what kind of segment this array element

describes or how to interpret the array element’ s information.
Type values and their meanings appear below.

p_of f set This member gives the offset from the beginning of the file at
which the first byte of the segment resides.

p_vaddr This member gives the virtual address at which the first byte of
the segment resides in memory.

p_paddr On systems for which physical addressing is relevant, this
member is reserved for the segment’ s physical address. Because
System V ignores physical addressing for application programs,
this member has unspecified contents for executable files and
shared objects.

5-2 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 75

p_filesz

p_mensz

p_fl ags

p_align

This member gives the number of bytesin the file image of the
segment; it may be zero.

This member gives the number of bytesin the memory image of
the segment; it may be zero.

This member gives flags relevant to the segment. Defined flag
values appear below.

As‘‘Program Loading’’ describesin this chapter of the processor
supplement, loadabl e process segments must have congruent
valuesfor p_vaddr and p_of f set , modulo the page size. This
member gives the value to which the segments are aligned in
memory and in thefile. Values 0 and 1 mean no alignment is
required. Otherwise, p_al i gn should be a positive, integral
power of 2, and p_vaddr should equal p_of f set , modulo

p_align.

Some entries describe process segments; others give supplementary information
and do not contribute to the process image. Segment entries may appear in any
order, except as explicitly noted below. Defined type values follow; other values
are reserved for future use.

Figure 5-2: Segment Types, p_type

Name Value
PT_NULL U 0
PT_LOAD g 1
PT_DYNAM C 2
PT_INTERP [J 3
PT_NOTE 0 4
PT SHIB U 5
PT_PHDR g 6

PT_LCPROC 70x70000000
PT_H PRCC aOX?fffffff

PT_LOAD

Program Header

The array element is unused; other members’ values are
undefined. Thistype lets the program header table have ignored
entries.

The array element specifies aloadable segment, described by
p_filesz andp_nensz. The bytesfrom the file are mapped to
the beginning of the memory segment. If the segment’ s memory
size(p_nensz) islarger than thefilesize (p_fi | esz), the*‘extra’

5-3

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 76

bytes are defined to hold the value 0 and to follow the segment’s
initialized area. The file size may not be larger than the memory
size. Loadable segment entries in the program header table
appear in ascending order, sorted on the p_vaddr member.

PT_DYNAM C Thearray element specifies dynamic linking information. See

‘‘Dynamic Section’’ below for more information.

PT_I NTERP The array element specifies the location and size of anull-

terminated path name to invoke as an interpreter. This segment
type is meaningful only for executable files (though it may occur
for shared objects); it may not occur more than once in afile. If it
is present, it must precede any loadable segment entry. See*‘Pro-
gram Interpreter’’ below for further information.

PT_NOTE The array element specifies the location and size of auxiliary

information. See‘‘Note Section’’ below for details.

PT_SH IB This segment typeis reserved but has unspecified semantics. Pro-

grams that contain an array element of this type do not conform
to the ABI.

PT_PHDR The array element, if present, specifies the location and size of the

program header table itself, both in the file and in the memory
image of the program. This segment type may not occur more
than oncein afile. Moreover, it may occur only if the program
header table is part of the memory image of the program. If itis
present, it must precede any loadable segment entry. See'‘Pro-
gram Interpreter’’ below for further information.

PT_LCGPRCCthrough PT_H PRCC

NOTE

Valuesin thisinclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Unless specifically required elsewhere, all program header segment types are
optional. That is, a file's program header table may contain only those ele-
ments relevant to its contents.

PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 77

Base Address

As‘‘Program Loading’’ in this chapter of the processor supplement describes, the
virtual addresses in the program headers might not represent the actual virtual
addresses of the program’s memory image. Executable filestypically contain
absolute code. To let the process execute correctly, the segments must reside at
the virtual addresses used to build the executable file. On the other hand, shared
object segments typically contain position-independent code. This lets a segment’s
virtual address change from one process to another, without invalidating execu-
tion behavior. Though the system chooses virtual addresses for individual
processes, it maintains the segments’ relative positions. Because position-
independent code uses relative addressing between segments, the difference
between virtual addressesin memory must match the difference between virtual
addressesin the file. The difference between the virtual address of any segment in
memory and the corresponding virtual addressin the file is thus a single constant
value for any one executable or shared object in agiven process. Thisdifferenceis
the baseaddress. One use of the base address is to rel ocate the memory image of
the program during dynamic linking.

An executable or shared object file' s base address is calculated during execution
from three values: the virtual memory load address, the maximum page size, and
the lowest virtual address of a program’ s loadable segment. To compute the base
address, one determines the memory address associated with the lowest p_vaddr
value for aPT_LQAD segment. This addressis truncated to the nearest multiple of
the maximum page size. The corresponding p_vaddr valueitself isalso truncated
to the nearest multiple of the maximum page size. The base addressisthe differ-
ence between the truncated memory address and the truncated p_vaddr value.

See this chapter in the processor supplement for more information and examples.
‘‘Operating System Interface’’ of Chapter 3 in the processor supplement contains
more information about the virtual address space and page size.

Segment Permissions

A program to be loaded by the system must must have at |east one |oadabl e seg-
ment (although thisis not required by the file format). When the system creates
|loadable segments’ memory images, it gives access permissions as specified in the
p_fl ags member.

Program Header 5-5

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 78

mmmmmmmmmmmmmimim

m<

mmm

Figure 5-3: Segment Flag Bits, p_f | ags

Name Vaue Meaning
PF_X g 0x1 UExecute
PF W g 0x2 gWrite
PF R 0 0x4 Read

PF_MASKPROC EOXf 0000000 EUnSpeCified

All bitsincluded in the PF_MASKPROC mask are reserved for processor-specific
semantics. If meanings are specified, the processor supplement explains them.

If apermission bit is 0, that type of accessisdenied. Actual memory permissions
depend on the memory management unit, which may vary from one system to
another. Although all flag combinations are valid, the system may grant more
access than requested. 1n no case, however, will a segment have write permission
unlessit is specified explicitly. The following table shows both the exact flag
interpretation and the allowabl e flag interpretation. ABIl-conforming systems may
provide either.

Figure 5-4: Segment Permissions

Flags Vaue Exact Allowable

none U o UAIll accessdenied UAIl access denied

PF X g 1 UExecute only O Read, execute

PF W 0 2 Write only rjRead, write, execute
PF W+PF X 0o 3 Write, execute Read, write, execute
PF R 0 4 ORead only ORead, execute
PF_R+PF_X U 5 URead, execute URead, execute
PF_R+PF W g 6 URead, write URead, write, execute
PF R+PF W+PF_X g8 7 ERead, write, execute g Read, write, execute

For example, typical text segments have read and execute—but not write—
permissions. Data segments normally have read, write, and execute permissions.

5-6 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 79

Segment Contents

An object file segment comprises one or more sections, though thisfact is tran-
sparent to the program header. Whether the file segment holds one or many sec-
tions also isimmaterial to program loading. Nonetheless, various data must be
present for program execution, dynamic linking, and so on. The diagrams below
illustrate segment contentsin general terms. The order and membership of sec-
tions within a segment may vary; moreover, processor-specific constraints may
alter the examples below. See the processor supplement for details.

Text segments contain read-only instructions and data, typically including the fol-
lowing sections described in Chapter 4. Other sections may also reside in loadable
segments; these examples are not meant to give compl ete and exclusive segment
contents.

Figure 5-5: Text Segment

O . text UO

D.rodata 0
0O .hash O

O-dynstr [
U .pit O

g0
grel.got

Data segments contain writable data and instructions, typically including the fol-
lowing sections.

Figure 5-6: Data Segment

U . data U

Ed—.D
i dynam ¢
0 .got

O
H . bss E

A PT_DYNAM C program header element points at the. dynani ¢ section, explained
in‘‘Dynamic Section’’ below. The. got and. plt sections aso hold information
related to position-independent code and dynamic linking. Although the. pl t
appearsin atext segment above, it may reside in atext or a data segment,

Program Header 5-7

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 80

depending on the processor. See ‘' Global Offset Table'’ and ‘* Procedure Linkage
Table'’ in this chapter of the processor supplement for details.

As'‘Sections’ in Chapter 4 describes, the. bss section has the type SHT_NCBI TS.
Although it occupies no space in thefile, it contributes to the segment’ s memory
image. Normally, these uninitialized data reside at the end of the segment,
thereby making p_mensz larger thanp_fi | esz in the associated program header
element.

Note Section

Sometimes a vendor or system builder needs to mark an object file with specia
information that other programs will check for conformance, compatibility, etc.
Sections of type SHT _NOTE and program header elements of type PT_NOTE can be
used for this purpose. The note information in sections and program header ele-
ments holds any number of entries, each of which isan array of 4-bytewordsin
the format of the target processor. Labels appear below to help explain note infor-
mation organization, but they are not part of the specification.

Figure 5-7: Note Information

Chamesz U

gjescsz E

Otype 0O

namesz and nane
Thefirst nanesz bytesinnane contain a null-terminated character
representation of the entry’s owner or originator. Thereisno formal
mechanism for avoiding name conflicts. By convention, vendors use
their own name, such as*‘ XY Z Computer Company,’’ asthe identifier.
If no name is present, nanesz contains 0. Padding is present, if neces-
sary, to ensure 4-byte alignment for the descriptor. Such padding is
not included in nanesz.

5-8 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 81

descsz and desc

type

Thefirst descsz bytesindesc hold the note descriptor. The ABI
places no constraints on a descriptor’ s contents. If no descriptor is
present, descsz contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the next note entry. Such padding is not
included indescsz.

Thisword gives the interpretation of the descriptor. Each originator
controls its own types; multiple interpretations of a single type value
may exist. Thus, a program must recognize both the name and the
typeto ‘‘understand’’ adescriptor. Types currently must be non-
negative. The ABI does not define what descriptors mean.

Toillustrate, the following note segment holds two entries.

Figure 5-8: Example Note Segment

+0 +1 +2 +3

namesz U 7 g
descsz H 0 rjNo descriptor
type U 1 O
narme g x Oy 0Oz D H
0C Ho 0\0 Hpd O
nanesz U 7 B
descsz H 8 0
type a 3 a
nave Sx Oy Oz O U
B U
gC go [0\0 Opd [
desc O word 0 0
= U
0O word 1 0

The system reserves note information with no name (namesz==0) and with a
NOTE | zero-length name (name[0] =="\ 0") but currently defines no types. All other
names must have at least one non-null character.
Program Header 5-9

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 82

Note information is optional. The presence of note information does not affect

a program’s ABI conformance, provided the information does not affect the

NOTE
program’s execution behavior. Otherwise, the program does not conform to

the ABI and has undefined behavior.

5-10 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 83

Program Loading (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NOTE | the desired processor describes the details.

Program Loading (Processor-Specific) 5-11

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 84

Dynamic Linking

Program Interpreter

An executable file that participates in dynamic linking shall have one PT_| NTERP E
program header element. During the function exec, the system retrieves a path X
name from the PT_| NTERP segment and creates the initial process image from the
interpreter file ssegments. That is, instead of using the original executablefile's
segment images, the system composes a memory image for the interpreter. It then
isthe interpreter’ s responsibility to receive control from the system and provide

an environment for the application program.

As‘‘Process Initialization’’ in Chapter 3 of the processor supplement mentions, the
interpreter receives control in one of two ways. First, it may receive afile descrip-
tor to read the executable file, positioned at the beginning. It can usethisfile
descriptor to read and/or map the executable file' s segments into memory.
Second, depending on the executable file format, the system may |oad the execut-
able file into memory instead of giving the interpreter an open file descriptor.
With the possible exception of the file descriptor, the interpreter’ sinitial process
state matches what the executabl e file would have received. Theinterpreter itself
may not require a second interpreter. An interpreter may be either a shared object
or an executablefile.

m A shared object (the normal case) isloaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area used by the function map and X
related services [see ‘*Virtual Address Space’’ in Chapter 3 of the processor
supplement]. Consequently, a shared object interpreter typically will not
conflict with the original executablefile's original segment addresses.

m An executablefileisloaded at fixed addresses; the system creates its seg-
ments using the virtual addresses from the program header table. Conse-
quently, an executable file interpreter’ s virtual addresses may collide with
the first executable file; the interpreter is responsible for resolving conflicts.

5-12 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 85

Dynamic Linker

When building an executabl e file that uses dynamic linking, the link editor adds a
program header element of type PT_| NTERP to an executablefile, telling the sys-

tem to invoke the dynamic linker as the program interpreter.

NOTE

Exec and the dynamic linker cooperate to create the process image for the pro-

The locations of the system provided dynamic linkers are processor—specific.

gram, which entails the following actions:

m Adding the executable file's memory segments to the process image;
m Adding shared object memory segments to the process image;
m Performing relocations for the executable file and its shared objects;

g
g

m Closing the file descriptor that was used to read the executablefile, if one
was given to the dynamic linker;

m Transferring control to the program, making it look asif the program had

received control directly from the function exec

Thelink editor aso constructs various data that assist the dynamic linker for exe-
cutable and shared object files. Asshown abovein ‘‘Program Header,”’ these data

reside in loadable segments, making them available during execution. (Once

again, recall the exact segment contents are processor-specific. See the processor
supplement for complete information.)

m A.dynam c section with type SHT _DYNAM C holds various data. The struc-

ture residing at the beginning of the section holds the addresses of other

dynamic linking information.

m The. hash section with type SHT_HASH holds a symbol hash table.

m The.got and. plt sectionswith type SHT PROEI TS hold two separate

tables. the global offset table and the procedure linkage table. Chapter 3

discusses how programs use the global offset table for position-independent
code. Sections below explain how the dynamic linker uses and changes the

tables to create memory images for object files.

Dynamic Linking

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 86

5-13

Because every ABI-conforming program imports the basic system servicesfrom a
shared object library [see * System Library’’ in Chapter 6], the dynamic linker par-
ticipates in every ABI-conforming program execution.

As‘'*Program Loading’’ explainsin the processor supplement, shared objects may
occupy Vvirtual memory addresses that are different from the addresses recorded
in thefile' s program header table. The dynamic linker relocates the memory
image, updating absolute addresses before the application gains control.
Although the absol ute address values would be correct if the library were |loaded
at the addresses specified in the program header table, this normally is not the
case.

If the process environment [see the function exec] contains a variable named
LD Bl ND_NOWNwith a non-null value, the dynamic linker processes all relocation
before transferring control to the program. For example, al the following
environment entries would specify this behavior.

m LD Bl ND NOM1
m LD Bl ND_ NOMon
m LD Bl ND_NOMof f

Otherwise, LD Bl ND_NOWeither does not occur in the environment or has a null
value. The dynamic linker is permitted to evaluate procedure linkage table entries
lazily, thus avoiding symbol resolution and relocation overhead for functions that
arenot called. See*‘Procedure Linkage Table'’ in this chapter of the processor
supplement for more information.

Dynamic Section

If an object file participates in dynamic linking, its program header table will have
an element of type PT_DYNAM C. This‘‘segment’’ containsthe. dynam c section.
A special symbol, DYNAM C, labels the section, which contains an array of the fol-
lowing structures.

5-14 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 87

Figure 5-9: Dynamic Structure

f

typedef struct {
Bl f32_Sword d_tag;
uni on {
B f32_Wrd d_val ;
B f 32_Addr d_ptr;
} d_un;
} Bf32_Dyn;
extern Hf32_Dyn _DYNAM (]

)

For each object with thistype, d_t ag controls the interpretation of d_un.

d val
interpretations.

d ptr

These H f 32_Wr d objects represent integer values with various

TheseH f 32_Addr objects represent program virtual addresses. As

mentioned previoudly, afile svirtual addresses might not match the
memory virtual addresses during execution. When interpreting
addresses contained in the dynamic structure, the dynamic linker
computes actual addresses, based on the original file value and the
memory base address. For consistency, files do not contain relocation
entriesto ‘‘correct’”’ addressesin the dynamic structure.

The following table summarizes the tag requirements for executable and shared

object files. If atagis marked ‘*mandatory,’’ then the dynamic linking array for an
ABI-conforming file must have an entry of that type. Likewise, ‘‘optiond’’ means
an entry for the tag may appear but is not required.

Figure 5-10: Dynamic Array Tags, d tag

Name Vaue d un Executable Shared Object
DI_NULL U 0 Uignored Umandatory Umandatory
DI _NEEDED B 1 gd_val Dopti ona Ijoptional
DI_PLTRELSZ 2 pd_val Dopt? ona Dopt?onal
DT_PLTQOT 0 3 pd_ptr joptional joptional
DI_HASH O 4 0Od_ptr Omandatory [Omandatory
DI _STRTAB U 5 Ud ptr Umandatory Umandatory
DI_SYMIAB H 6 Ed_pt r mandatory Hmandatory
Dynamic Linking 5-15
DRAFT COPY
March 18, 1997
File: chap5

386:adm.book:sum

Page: 88

Figure 5-10: Dynamic Array Tags, d_tag (continued)

Name Vaue d_un Executable Shared Object

DI_RELAT O 7 Ud ptr Umandatory Uoptional

O O O Ot
DI_RELASZ 0 8 Dd_vaI mandatory —optional
DI_RELAENT 9 d_val mandatory optional
DI_STRZ 0 10 d_ val mandatory [jmandatory
DT_SYMENT O 11 0Od val Omandatory [Omandatory
DT INT g 12 Ud ptr Uoptional Uoptional

O O O At Ot
DT FIN 0 13 —=d ptr optional optional
DT_SCNAME 0 14 gd_val jignored joptional
DI_RPATH 0 15 d val joptional nignored
Dr_SymsBCLIC O 16 Oignored Oignored Ooptional
DI_RELT O 17 Ud ptr Umandatory UHoptional
DI _RELSZ g 18 Dd_vaI mandatory —optional
DI_RELENT 0 19 pd_val mandatory optional
DI_PLTREL 0 20 d val joptional joptional
DT_DEBUG O 21 0Od ptr Ooptional Oignored
DT _TEXTREL U 22 Uignored Uoptional Uoptional

O O O At Ot
DTr_JMPREL 0 23 Dd_ptr optional optional
DI_BI ND_NOW 24 qjignored fjoptional joptional
DI_LCPROC [j0x70000000 rjunspecified unspecified unspecified
DI_H PRCC

EOX?fffffff Bunspecified Hunspecified Eunspecified

T See the description of DT_RELA and DT_REL below for the rel ationship between these

two tags.
DT_NULL

DT_NEEDED

DI_PLTRELSZ

5-16

An entry with aDI_NULL tag marks the end of the_DYNAM C
array.

This element holds the string table offset of a null-terminated
string, giving the name of a needed library. The offset is an index
into the table recorded in the DT_STRTAB entry. See‘‘ Shared
Object Dependencies’ for more information about these names.
The dynamic array may contain multiple entries with this type.
These entries’ relative order is significant, though their relation to
entries of other typesis not.

This element holds the total size, in bytes, of the relocation entries
associated with the procedure linkage table. If an entry of type
DI_JMPREL is present, aDI_PLTRELSZ must accompany it.

PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 89

DT_PLTGOT

DT_HASH

DT_STRTAB

DT_SYMIAB

DT_RELA

DT_RELASZ

DT_RELAENT

DT_STRSZ
DT_SYMENT
DT INT

DT_FIN

Dynamic Linking

This element holds an address associated with the procedure link-
age table and/or the global offset table. See this section in the
processor supplement for details.

This element holds the address of the symbol hash table,
described in **Hash Table.”” This hash table refersto the symbol
table referenced by the DT_SYMI'AB element.

This element holds the address of the string table, described in
Chapter 4. Symbol names, library names, and other strings reside
in thistable.

This element holds the address of the symbol table, described in
Chapter 4, with B f 32_Symentriesfor the 32-bit class of files.

This element holds the address of arelocation table, described in
Chapter 4. Entriesin the table have explicit addends, such as

B f 32_Rel a for the 32-bit file class. An object file may have mul-
tiple relocation sections. When building the relocation table for
an executable or shared object file, the link editor catenates those
sectionsto form asingle table. Although the sections remain
independent in the object file, the dynamic linker seesasingle
table. When the dynamic linker creates the process image for an
executable file or adds a shared object to the processimage, it
reads the relocation table and performs the associated actions. If
this element is present, the dynamic structure must also have
DI_RELASZ and DIT_RELAENT elements. When relocationis‘* man-
datory’’ for afile, either DT_RELA or DT_REL must occur (both are
permitted but only oneis required).

This element holds the total size, in bytes, of the DT_RELA reloca
tion table.

This element holds the size, in bytes, of theDI_RELA relocation
entry.

This element holds the size, in bytes, of the string table.
This element holds the size, in bytes, of asymbol table entry.

This element holds the address of the initialization function, dis-
cussed in ‘‘ Initialization and Termination Functions’ below.

This element holds the address of the termination function, dis-
cussed in ‘‘ Initialization and Termination Functions'’ below.

5-17

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 90

DT_SONAME

DT_RPATH

Dr_symsCLI C

DT_REL

DT_RELSZ

DT_RELENT

DT_PLTREL

DT_DEBUG

DT_TEXTREL

5-18

This element holds the string table offset of a null-terminated
string, giving the name of the shared object. The offset isan index
into the table recorded in the DT_STRTAB entry. See‘‘ Shared
Object Dependencies’’ below for more information about these
names.

This element holds the string table offset of a null-terminated
search library search path string, discussed in ** Shared Object
Dependencies’”’ The offset is an index into the table recorded in
the DT_STRTAB entry.

This element’ s presence in a shared object library altersthe
dynamic linker’ s symbol resolution algorithm for references
within the library. Instead of starting a symbol search with the
executable file, the dynamic linker starts from the shared object
itself. If the shared object fails to supply the referenced symboal,
the dynamic linker then searches the executable file and other
shared objects as usual.

Thiselement issimilar to DT_RELA, except its table has implicit
addends, such asH f 32_Rel for the 32-bit fileclass. If thisele-
ment is present, the dynamic structure must also have DI_RELSZ
and DI_RELENT elements.

This element holds the total size, in bytes, of the DT_REL reloca
tion table.

This element holds the size, in bytes, of the DT_REL relocation
entry.

This member specifies the type of relocation entry to which the
procedure linkage table refers. Thed_val member holdsDT_REL
or DT_RELA, as appropriate. All relocationsin a procedure link-
age table must use the same rel ocation.

This member is used for debugging. Its contents are not specified
for the ABI; programs that access this entry are not ABI-
conforming.

This member’ s absence signifies that no relocation entry should
cause a modification to a non-writable segment, as specified by
the segment permissions in the program header table. If this
member is present, one or more relocation entries might request
modifications to a non-writable segment, and the dynamic linker
can prepare accordingly.

PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 91

DI_JMPREL If present, thisentries' d_pt r member holds the address of reloca-
tion entries associated solely with the procedure linkage table.
Separating these relocation entries lets the dynamic linker ignore
them during processinitialization, if lazy binding is enabled. If
this entry is present, the related entries of typesDI_ PLTRELSZ and
DI_PLTREL must also be present.

DI_BI ND_NOW If present in a shared object or executable, this entry instructs the
dynamic linker to process all relocations for the object containing
this entry before transferring control to the program. The pres-
ence of this entry takes precedence over adirective to use lazy
binding for this object when specified through the environment or
viadl open(BA_LIB).

DI_LCGPROCthrough DT_H PROC
Valuesinthisinclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Except for the DT_NULL element at the end of the array, and the relative order of
DI _NEEDED elements, entries may appear in any order. Tag values not appearing
in the table are reserved.

Shared Object Dependencies

When the link editor processes an archive library, it extracts library members and
copies them into the output object file. These statically linked services are avail-
able during execution without involving the dynamic linker. Shared objects also
provide services, and the dynamic linker must attach the proper shared object files
to the process image for execution.

When the dynamic linker creates the memory segments for an object file, the
dependencies (recorded in DT_NEEDED entries of the dynamic structure) tell what
shared objects are needed to supply the program’ s services. By repeatedly con-
necting referenced shared objects and their dependencies, the dynamic linker
builds a complete processimage. When resolving symbolic references, the
dynamic linker examines the symbol tables with a breadth-first search. That is, it
first looks at the symbol table of the executable program itself, then at the symbol
tables of the DT_NEEDED entries (in order), then at the second level DT_NEEDED
entries, and so on. Shared object files must be readable by the process; other per-
missions are not required.

Dynamic Linking 5-19

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 92

L

M

NOTE

Even when a shared object is referenced multiple times in the dependency
list, the dynamic linker will connect the object only once to the process.

Names in the dependency list are copies either of the DT_SONAME strings or the
path names of the shared objects used to build the object file. For example, if the
link editor builds an executable file using one shared object with aDI_SONAME
entry of | i b1 and another shared object library with the path name
{usr/1ib/lib2,the executablefilewill containli bl and/usr/1ib/lib2 inits
dependency list.

If a shared object name has one or more slash (/) characters anywhere in the
name, such as/usr/lib/lib2 aboveordirectory/fil e, thedynamic linker
uses that string directly as the path name. If the name has no dashes, such as

I'i bl above, three facilities specify shared object path searching, with the follow-
ing precedence.

5-20

First, the dynamic array tag DT_RPATH may give a string that holds a list of
directories, separated by colons (:). For example, the string
/hore/dir/1ib:/home/dir2/lib: tellsthedynamic linker to search first
the directory / hore/ dir/1i b, then/ home/ di r2/1i b, and then the current
directory to find dependencies.

Second, avariable called LD LI BRARY PATH in the process environment [see
the function exec] may hold alist of directories as above, optionally fol-
lowed by asemicolon (;) and another directory list. Thefollowing values
would be equivalent to the previous example:

o LD LI BRARY PATH=/ hone/dir/lib:/hone/dir2/1ib:
o LD LI BRARY PATH=/ hone/dir/lib;/hone/dir2/1ib:
o LD LI BRARY PATH=/ hone/dir/lib:/hone/dir2/1ib:;

All LD LI BRARY_PATH directories are searched after those from DI RPATH.
Although some programs (such as the link editor) treat the lists before and
after the semicolon differently, the dynamic linker does not. Nevertheless,
the dynamic linker accepts the semicolon notation, with the semantics
described above.

Finally, if the other two groups of directories fail to locate the desired
library, the dynamic linker searches/ usr/lib.

PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 93

For security, the dynamic linker ignores environmental search specifications
NOoTE | (such as LD_LI BRARY_PATH) for set-user and set-group ID programs. It does, M
however, search DT_RPATH directories and / usr/ 1 i b. The same restriction M

‘ may be applied to processes that have more than minimal privileges on sys-
tems with installed extended security systems.

Global Offset Table (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NoTE | the desired processor describes the details.

Procedure Linkage Table (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NOTE | the desired processor describes the details.

Hash Table

A hash table of H f 32_Wr d objects supports symbol table access. Labels appear
below to help explain the hash table organization, but they are not part of the
specification.

Figure 5-11: Symbol Hash Table

nbucket
nchai n
bucket [0]

chai n[0]

mOoooooobooo

0

=

[

0

O S
H)ucket [nbucket - 1]
0

a

B

chai n[nchai n- 1]

Dynamic Linking 5-21

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 94

Thebucket array containsnbucket entries, and thechai n array containsnchai n
entries; indexes start at 0. Both bucket and chai n hold symbol table indexes.
Chain table entries parallel the symbol table. The number of symbol table entries
should equal nchai n; so symbol table indexes also select chain table entries. A
hashing function (shown below) accepts a symbol name and returns a value that
may be used to compute abucket index. Consequently, if the hashing function
returns the value x for some name, bucket [X% bucket] givesanindex,y, into
both the symboal table and the chain table. If the symbol table entry is not the one
desired, chai n[y] givesthe next symbol table entry with the same hash value.
One can follow thechai n links until either the selected symbol table entry holds
the desired name or the chai n entry contains the value STN_UNDEF.

Figure 5-12: Hashing Function

s N

unsi gned | ong
el f_hash(const unsi gned char *nane)

{

unsi gned | ong h=0 g

whil e (*nane)

{

h = (h << 4) + *pane++;
if (g = h & 0xf0000000)

h =g > 24
h & “g;

}

return h;

L J

Initialization and Termination Functions

After the dynamic linker has built the process image and performed the rel oca-
tions, each shared object gets the opportunity to execute some initialization code.
All shared object initializations happen before the executabl e file gains control.

Before the initialization code for any object A is called, the initialization code for
any other objects that object A depends on are called. For these purposes, an
object A depends on another object B, if B appearsin A’slist of needed objects
(recorded in the DT_NEEDED entries of the dynamic structure). The order of ini-
tialization for circular dependencies is undefined.

5-22 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 95

IZILLLL

Theinitialization of objects occurs by recursing through the needed entries of each
object. Theinitialization code for an object isinvoked after the needed entries for
that object have been processed. The order of processing among the entries of a
particular list of needed objects is unspecified.

<L

Each processor supplement may optionally further restrict the algorithm used MM
NoTE | to determine the order of initialization. Any such restriction, however, may not MM
conflict with the rules described by this specification. MM

The following exampleillustrates two of the possible correct orderings which can
be generated for the example NEEDED lists. In this example the a.out is depen-
dent on b, d, and e. b is dependent on d and f, while d is dependent on e and g.
From this information a dependency graph can be drawn. The above algorithm
on initialization will then allow the following specified initialization orderings
among others.

IZLLZLLL

Dynamic Linking 5-23

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 96

Initialization Ordering Example

5-24 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 97

Figure 5-13: Initialization Ordering Example

NEEDED Lists

a.out b

Init Orderings:

Dependency Graph

Dynamic Linking

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 98

5-25

Similarly, shared objects may have termination functions, which are executed with
the function at exi t mechanism after the base process begins its termination
sequence. The order in which the dynamic linker calls termination functionsis the
exact reverse order of their corresponding initialization functions. If ashared
object has atermination function, but no initialization function, the termination
function will execute in the order it would have asif the shared object’ sinitializa-
tion function was present. The dynamic linker ensures that it will not execute any
initialization or termination functions more than once.

Shared objects designate their initialization and termination functions through the
DI_INTandDI_FI N entriesin the dynamic structure, described in ** Dynamic
Section’’ above. Typically, the code for these functionsresidesinthe. i nit and
.fini sections, mentionedin‘‘Sections’ of Chapter 4.

Although the function at exi t termination processing normally will be done, it

NOTE | is not guaranteed to have executed upon process death. In particular, the X

process will not execute the termination processing if it calls _exi t [see the

‘ function exi t] or if the process dies because it received a signal that it neither
caught nor ignored.

The dynamic linker is not responsible for calling the executablefile's. i nit sec-
tion or registering the executablefile's. fi ni section with the functionat exi t .
Termination functions specified by users viatheat exi t mechanism must be exe-
cuted before any termination functions of shared objects.

5-26 PROGRAM LOADING AND DYNAMIC LINKING

DRAFT COPY
March 18, 1997
File: chap5
386:adm.book:sum

Page: 99

IIZIZILIX

M
M
M

