
Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1'

&

$

%

Bottom-UP Parsing

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 2'

&

$

%

Note

The parser builds the parse tree starting from
the leaf nodes labeled by the terminals
(tokens). It tries to discover appropriate
reductions and introduces the internal nodes
that are labeled by non-terminals corresponding
to the reductions. The process finally ends at
the root node labeled by the start symbol, or
ends with an error condition.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 3'

&

$

%

Note

At any intermediate point there is a sequence of
roots of partially constructed trees (from left to
right). This sequence is called an upper frontier
of the parse tree.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 4'

&

$

%

Note

At every step the parser tries to find an
appropriate β in the upper frontier, which can
be reduced by a rule A → β, so that it leads to
acceptance of input.
If no such β is available, the parser either calls
the scanner to get a new token, creates a leaf
node and extend the frontier, or it reports an
error.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 5'

&

$

%

Upper Frontier

+ ic * ic

F

T

ic

F

T

ic

F

T

* + ic * ic

F

T

ic

F

T

ic

F

T

*

F

old frontier new frontier

F −−> ic

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 6'

&

$

%

Note

A parser reads input from left-to-right. In a
bottom-up parser, the first reduction discovered
is the last step of derivation at the left-most
end.
Input further away from the left-end are
produced by earlier steps of derivation. This
indicates a natural sequence of rightmost
derivations.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 7'

&

$

%

Note

A bottom-up parser follows the derivation
sequence in reverse order as it performs
reduction. So an upper frontier is a prefix of a
right sentential form.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 8'

&

$

%

Handle

Let αβx be a right sentential form, A → β be a
production rule, and αAx be the previous right
sentential form (x ∈ Σ∗). If k indicates the
position of β in αβx, the doublet (A → β, k) is
called a handle of the frontier αβ or right
sentential form αβx.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 9'

&

$

%

Handle

In an unambiguous grammar the rightmost
derivation is unique, so a handle of a right
sentential form is unique. But that need not be
true for an ambiguous grammar.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 10'

&

$

%

Example

In our example, after the reduction of T + F to
T + T , the parser does not find any other
handle in the frontier and invokes the scanner,
that supplies the token for ‘∗’. The parser forms
the corresponding leaf node and includes it in
the frontier (T + T∗). Still there is no handle
and the scanner is invoked again to get the next
token ‘ic’. The parser detects the handle
(F → ic, T + T∗ic) and reduces it to F .

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 11'

&

$

%

Shift-Reduce Parsing

The parser essentially takes two types of

actions,

• it detects a handle in the frontier and

reduces it to get a new frontier, or

• if the handle is not present, it calls the

scanner, gets a new token and extends

(shifts) the frontier.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 12'

&

$

%

Note

The parser may fail to detect a handle and may
report an error. But if discovered, the handle is
always present at the right end of the upper
frontier.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 13'

&

$

%

Shift-Reduce Parsing

This is called a shift-reduce parser. It uses a
stack to hold the upper frontier (left end at the
bottom of the stack). The upper frontier is a
prefix of a right-sentential form at most up to
the current handle. A prefix of the frontier is
also called a viable prefix of the right sentential
form.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 14'

&

$

%

Accept

If the parser can successfully reduce the whole
input to the start symbol of the grammar. It
reports acceptance of the input i.e. the input
string is syntactically (grammatically) correct.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 15'

&

$

%

Example

Consider our old grammar:

1 P → main DL SL end

2 DL → D DL | D

4 D → T VL ;

5 VL → id VL | id

7 T → int | float

9 SL → S SL | ε

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 16'

&

$

%

Production Rules

11 S → ES | IS | WS | IOS

15 ES → id := E ;

16 IS → if be then SL end |

if be then SL else SL end

18 WS → while be do SL end

19 IOS → scan id ; | print e ;

a

aWe are considering BE and E as terminals.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 17'

&

$

%

Input

Let the input be
main

int id ;
id := E ;
print E ;

end$
The end of input is marked by eof ($) and the
bottom-of-stack is marked also be $.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 18'

&

$

%

Parsing

Stack Next Input Handle Action

$ main nil shift

$ main int nil shift

$ main int id (T → int) reduce

$ main T id nil shift

$ main T id ; (VL → id) reduce

$ main T VL ; nil shift

$ main T VL ; id (D → T VL ;) reduce

$ main D id (DL → D) reduce

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 19'

&

$

%

Note

The position of the handle is always on the
top-of-stack. But the main problem is the
detection of handle - when to push a token in
the stack and when to reduce, and by which
rule.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 20'

&

$

%

Automaton of Viable Prefixes

It is interesting to note that the viable prefixes
of any CFG is a regular language. For some
class of CFG it is possible to design a DFA that
can be useda to make the shift-reduce decision
of a parser depending on the state and fixed
number of look-ahead.

aAlong with some heuristic information.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 21'

&

$

%

LR(k) Parsing

LR(k) is an important class of CFG where a
bottom-up parsing technique can be used
efficientlya.
The ‘L’ is for left-to-right scanning of input,
and ‘R’ is for discovering the rightmost
derivation in reverse order (reduction) by
looking ahead at most k input tokens.

aOperator precedence parsing is another bottom-up technique that we shall

not discuss. The time complexity of LR(k) is O(n) where n is the length of the

input.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 22'

&

$

%

Note

We shall consider the cases where k = 0 and
k = 1. We shall also consider two other special
cases, simple LR(1) or SLR and look-ahead LR
or LALR. An LR(0) parser does not look-ahead
to decide its shift or reduce actionsa.

aIt may look-ahead for early detection of error.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 23'

&

$

%

State of Viable Prefix Automaton

For every production rule A → α, the ordered
pair (A → α, β), where β is a prefix of α may
be viewed as a state of the viable prefix
automaton.
The automaton is in state (A → α, β) after
consuming β and expects to see γ so that
α = βγ.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 24'

&

$

%

State of Viable Prefix Automaton

The trouble is that there may be more than one
production rules of the form A → βγ1 and
B → βγ2. So both the pairs (A → βγ1, β) and
(B → βγ2, β) are valid and will be in the state
of the automatona.
A pair (A → βγ, β) is represented as an LR(0)
item.

a(S → A, ε), (A → B, ε), (A → βγ1, ε), (B → βγ2, ε).

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 25'

&

$

%

LR(0) Items

Given a CFG G, an LR(0) item is a production
rule A → α with a dot (‘•’) anywhere in α. As
an example, if α = pq, the corresponding LR(0)
items are A → •pq, A → p • q and A → pq•. If
the length of α is k, it can generate k+1 LR(0)
items. If A → ε, then the only LR(0) item is
A → •.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 26'

&

$

%

State

An LR(0) item corresponds to a state of the
viable prefix automaton. The item A → α • β
indicates that the ‘α’ portion of the right-hand
side ‘αβ’ has already been seen by the
automaton.
It is possible that there are more than one
viable prefixes of the form γαβ and γαβ′, with
the handles A → αβ and B → αβ′. So both
‘α • β’ and ‘α • β′’ may indicate the same state.
In general set of items corresponds to a state of
the automaton.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 27'

&

$

%

Note

An item A → α • β indicates that the parser
has already seen the string of terminals derived
from α (α → x) and it expects to see a string of
terminals derivable from β.
If β = Bµ i.e. A → α •Bµ; then the parser also
expects to see any string generated by ‘B’ and
all the items of the B → •γ are to be included
in the state of A → α • Bβa.

aThis is actually ε-closure of A → α •Bµ.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 28'

&

$

%

Canonical LR(0) Collection

The set of states of the the DFA of the viable
prefix automaton is a collection of the set of
LR(0) items and is known as the canonical
LR(0) collection. A state of the DFA is an
element of this canonical collection.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 29'

&

$

%

Example

Consider the following grammar:

1 : P → m L s e

2 : L → D L

3 : L → D

4 : D → T V ;

5 : V → d V

6 : V → d

7 : T → i

8 : T → f

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 30'

&

$

%

Closure()

If i is an LR(0) item, then Closure(i) is defined

as follows:

• i ∈ Closure(i) - basis,

• If A → α • Bβ ∈ Closure(i) and B → γ is a

production rule, then B → •γ ∈ Closure(i).

The closure of I, a set of LR(0) items, is
defined as Closure(I) =

⋃
i∈I Closure(i).

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 31'

&

$

%

Example

Let i = P → m • L s e,

Closure(i) = {

P → m • L s e

L → •D L

L → •D

D → •T V ;

T → •i

T → •f

}

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 32'

&

$

%

Goto(I,X)

Let I be a set of LR(0) items and X ∈ Σ ∪N .

The set of LR(0) items, Goto(I,X) is

Closure ({A → α X • β : A → α •X β ∈ I}) .

Goto() is the state transition function δ of the
DFA.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 33'

&

$

%

Example

From our previous example
Goto(Closure(P → m • L s e), D) is

{L → D • L

L → D•

L → •DL

L → •D

D → •TV ;

T → •i

T → •f}

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 34'

&

$

%

Augmented Grammar

We augment the original grammar with a new
start symbol, say S′, that has only one
production rule S′ → S$, where S is the start
symbol of the original grammar. When we
come to a state corresponding to (S′ → S$, S)
or with the LR(0) item S′ → S • $, we know
that the parsing is OK.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 35'

&

$

%

LR(0) Automaton

The alphabet of the automaton is Σ ∪N .
The start state of the automaton is s0 =
Closure(S′ → •S$), the automaton expects to
see the string generated by S.
All constructed states are final statesa of the
automaton as it accepts a prefix language.
For every X ∈ Σ ∪N and for all states s
already constructed, we compute Goto(s,X)b to
build the automaton.

aThe constructed automaton is incompletely specified and all unspecified

transitions lead to the only non-final state.
bThis nothing but δ(s,X).

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 36'

&

$

%

Example: States

s0 : S′ → •P$ P → •m L s e

s1 : S′ → P • $

s2 : P → m • L s e L → •D L L → •D

D → •T V ; T → •i T → •f

s3 : P → m L • s e

s4 : L → D • L L → D• L → •D L

L → •D D → •T V ; T → •i

T → •f

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 37'

&

$

%

States

s5 : D → T • V ; V → •d V V → •d

s6 : T → i•

s7 : T → f•

s8 : P → m L s • e

s9 : L → D L•

s10 : D → T V •;

s11 : V → d • V V → d• V → •d V

V → •d

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 38'

&

$

%

States

s12 : P → m L s e•

s13 : D → T V ; •

s14 : V → d V •

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 39'

&

$

%

State Transitions

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 40'

&

$

%

CS NS (Input)

m s e ; d i f P L D V T

0 2 1

2 6 7 3 4 5

3 8

4 6 7 9 4 5

5 11 10

8 12

10 13

11 11 14

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 41'

&

$

%

Items

• kernel item:

{S′ → •S$} ∪ {A → α • β : α 6= ε}.

• nonkernel item: {A → •α} \ {S′ → •S$}.

Every nonkernel item in a state comes from the
closure operation and can be generated from
the kernel items. So it is not necessary to store
them explicitly.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 42'

&

$

%

Note

If a state has an item of the form A → α•, it
indicates that the parser has possibly seen a
handle and it may reduce the current right
sentential form to the previous right sentential
form. But there may be other complications
that we shall take up.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 43'

&

$

%

Structure of LR Parser

Every LR-parser has a similar structure with a
core parsing program, a stack to store the
states of the DFA and a parsing table. The
content of the table is different for different
types of LR parsers.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 44'

&

$

%

Structure of LR Parsing Table

The parsing table has two parts, action and
goto.
The action(i, a) is a function of two parameters,
the current state i of the DFAa and the current
input symbol, a. The table is indexed by ‘i’ and
‘a’. The outcome or the value, stored in the
table, are of four different types.

aThis state is stored on the top of the stack.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 45'

&

$

%

Action-1

Push Goto(i, a) = j in the stack. This is
encoded as sj

a - shift j.
The parser has not yet found the handle and
augments the upper frontier by including the
next token (in the leaf node).

aIn fact the input token and the related attribute are also pushed in the

same or a different stack (value stack) for the semantic actions. But that is not

required for parsing.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 46'

&

$

%

Action-2

Reduce by the rule number j : A → α. Let the
length of α = α1α2 · · ·αk be k. The top k states
on the stack $ · · · qqi1qi2 · · · qik, corresponding to
this αa, are popped out and Goto(q, A) = p is
pushed. This is encoded as rj - reduce by rule j.
Old stack: $ · · · qqi1qi2 · · · qik
New stack: $ · · · qp

aGoto(q, α1) = qi1 , · · ·, Goto(qik−1
, αk) = qik .

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 47'

&

$

%

goto Portion

After a reduction (action 2) by the rule A → α,
the top-of-stack is q and we have to push
Goto(q, A) = p on the stack. This information
is stored in the goto portion of the table. This
is the state-transition function restricted to the
non-terminals.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 48'

&

$

%

Action-3 & 4

The parser accepts the input on some state
when the only input left is the eof ($). The
parser rejects the input on some state where
the table entry is undefined.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 49'

&

$

%

Configuration

The configuration of the parser is specified by
the content of the stack and the remaining
input. If the parser starts with the initial state
of the DFA in the stack, the top-of-stack always
contains the current state of the DFA. So the
configuration is ($q0qi1 · · · qik, ajaj+1 · · · an$). In
terms of the sentential form it is
α1α2 · · ·αkaj+1 · · · an$.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 50'

&

$

%

Initial and Final Configurations

Initial Config.: ($q0, a1 · · · ajaj+1 · · · an$).
Final Config.: ($q0qf , $),
where Goto(q0, S) = qf and the token stream is
empty.

Lect 6 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 51'

&

$

%

Error Configuration

Error Config.: ($q0 · · · q, ajaj+1 · · · an$),
where Action(q, aj) is not defined.

Lect 6 Goutam Biswas

