
Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1'

&

$

%

Top-Down Parsing

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 2'

&

$

%

Non-terminal as a Function

In a top-down parser a non-terminal may be
viewed as a procedure matching a portion of
the input. In our expression grammar G with
the E-productions E → E + T , E → E − T ,
E → T , the function looks as follows:

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 3'

&

$

%

Function of E

E()

Select an E-production p

// here is the nondeterminism

if p = E → E + T

call E()

if yylex()=’+’

call T ()

else error

else if · · ·

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 4'

&

$

%

Example

Let the input be ic· · ·. The parser starts with
the start symbol E and chooses the production
rule E → E + T . But then there is no change in
the input and the leftmost non-terminal E may
be expanded again and again ad infinitum.
A left recursive grammar may lead to
non-termination.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 5'

&

$

%

Example

In the previous example let the parser starts
with the start symbol E and chooses the
following sequence of production rules: E → T ,
T → F and F → ic. The first symbol of the
input matches, but the choice may be incorrect
if the next input symbol is ‘+’, as there is no
rule with right hand side F + · · ·.
It may be necessary to backtrack on the choice
of production rules.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 6'

&

$

%

Example

Consider the grammar:

S → aSa | aTba | c

T → bS

If the input is a· · ·, we cannot decide whether
to use the first or the second production rule of
S. But if the parser is designed to look-ahead
another symbol (2-look-ahead), the correct
choice can be made. If the input is aa· · ·, the
selected rule for derivation is S → aSa. But if
it is ab· · ·, the choice is S → aTba.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 7'

&

$

%

Note

In case of the expression grammar G, no fixed
amount of look-ahead can help. We may have
5-look-ahead and the input is ic+ic+ic· · ·. The
derivation sequence will be
E → E + T → E + T + T . But the next step is
not known as the operator after the rightmost
ic is not known. Note that no token has been
consumed (read) so far.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 8'

&

$

%

Example

Consider the ambiguous grammar:

S → aSa | bSb | aTba | c

T → bS

There is no way to decide a rule entirely on the
basis of the input, without removing the
ambiguity.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 9'

&

$

%

LL(k)

An unambiguous context-free grammar without
left recursion is called an LL(k) grammara, if a
top-down predictive parser for its language can
be constructed with at most k input look-ahead.
We shall consider the case of k = 1.

aThe parser scans the input from left-to-right and uses the leftmost derivation.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 10'

&

$

%

FIRST(X)

Informally, the FIRST() set of a terminal or a
non-terminal X or a string over terminals and
non-terminals, is the collection of all terminals
(also ε) that can be derive from X, in the
grammar, as the first (leftmost) terminal
symbol.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 11'

&

$

%

FIRST(X)

If X ∈ Σ ∪N ∪ {ε}, then FIRST(X) ⊆ Σ ∪ {ε}

is defined inductively as follows:

• FIRST(X) = {X}, if X ∈ Σ ∪ {ε},

• FIRST(X) is
⋃
X→α∈P FIRST(α), X ∈ N ,

• ε ∈ FIRST(X), if there is X → α and α→ ε,

• FIRST(A→ α) is the FIRST(α).

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 12'

&

$

%

FIRST(X)

If α = X1X2 · · ·Xk, then FIRST(X1) \ {ε} ⊆
FIRST(α) and FIRST(Xi) \ {ε} ⊆ FIRST(α)
when ε ∈

⋂i−1
j=1 FIRST(Xj), 1 < i ≤ k.

If ε ∈
⋂k
j=1

FIRST(Xj), then ε ∈ FIRST(α).

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 13'

&

$

%

Example

Consider the classic expression grammar;
FIRST(E) =FIRST(T) =FIRST(F) = {ic, (}.
There are two production rules for each of E
and T with the identical FIRST() sets:
E → E + T, E → T and T → T ∗ F, T → F

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 14'

&

$

%

Example

Consider the grammar obtained after removing

the left-recursion from G:

E → TE ′

E ′ → +TE ′ | ε

T → FT ′

T ′ → ∗FT ′ | ε

F → (E) | ic

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 15'

&

$

%

Example

FIRST(E) =FIRST(T) =FIRST(F) = {ic, (},
FIRST(E ′) = {+, ε}, and FIRST(T ′) = {∗, ε}.
No non-terminal has more than one production
rule with the identical FIRST() set.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 16'

&

$

%

FOLLOW(X)

For every non-terminal X, the FOLLOW() set

is the collection of all terminals that can follow

X in a sentential form. The set can be defined

inductively as follows.

• The special symbol eof or $ is in

FOLLOW(S), where S is the start symbol.

• If A→ αBβ be a production rule,

FIRST(β) \ {ε} ⊆ FOLLOW(B).

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 17'

&

$

%

FOLLOW(X)

• If A→ αBβ, where β = ε or β → ε, then

FOLLOW(A) ⊆ FOLLOW(B).

The reason is simple:
S → uAv → uαBβv → uαBv, naturally
FIRST(v) ⊆ FOLLOW(A), FOLLOW(B).

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 18'

&

$

%

Computation of FOLLOW() Sets

for each A ∈ N

FOLLOW(A)← ∅

FOLLOW(S)← {$}

while (FOLLOW sets are not fixed points)

for each A→ β1β2 · · · βk ∈ P

if (βk ∈ N)

FOLLOW(βk)← FOLLOW(βk)∪ FOLLOW(A)

FA ← FOLLOW(A)

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 19'

&

$

%

Computation of FOLLOW() Sets

for i← k downto 2

if (βi ∈ N & ε ∈ FOLLOW(βi))

FOLLOW(βi−1)← FOLLOW(βi−1)

∪ FIRST(βi) \ {ε}∪ FA

else

FOLLOW(βi−1)← FOLLOW(βi−1)

∪ FIRST(βi) \ {ε}

FA ← ∅

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 20'

&

$

%

Example

In the expression grammar G:
FOLLOW(E) = {$,+,)}, FOLLOW(T) =
FOLLOW(E) ∪ {∗} = {$,+,), ∗} and
FOLLOW(F) = {$,+,), ∗}.
In the transformed grammar:
FOLLOW(E) = FOLLOW(E ′) = {$,)},
FOLLOW(T) = FOLLOW(T ′) = {$,),+} and
FOLLOW(F) = {$,),+, ∗}.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 21'

&

$

%

LL(1) Grammar

A context-free grammar G is LL(1) iff for any

pair of distinct productions A→ α, A→ β, the

following conditions are satisfied.

• FIRST(α)∩ FIRST(β) = ∅ i.e. no

a ∈ Σ ∪ {ε} can belong to both.

• If α→ ε or α = ε, then

FIRST(β)∩ FOLLOW(A) = ∅.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 22'

&

$

%

Example

Consider the following grammar with the set of
terminals,
Σ = {id ; := int float main do else end
if print scan then while} ∪{E BE}a;
the set of non-terminals,
N = {P DL D VL T SL S ES IS WS IOS};
the start symbol is P and the set of production
rules are:

a
E and BE, corresponds to expression and boolean expressions, are actually

non-terminals. But here we treat them as terminals.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 23'

&

$

%

Production Rules

1 P → main DL SL end

2 DL → D DL | D

4 D → T VL ;

5 VL → id VL | id

7 T → int | float

9 SL → S SL | ε

11 S → ES | IS | WS | IOS

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 24'

&

$

%

Production Rules

15 ES → id := E ;

16 IS → if BE then SL end |

if BE then SL else SL end

18 WS → while BE do SL end

19 IOS → scan id ; | print E ;

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 25'

&

$

%

Note

There is no production rule with left-recursion.
But the rules 2,3, 5,6, and 16,17 needs
left-factoring as the FIRST() sets are not
disjoint. The transformed grammar after
factoring is:

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 26'

&

$

%

New Production Rules

1 P → main DL SL end

2 DL → D DO

3 DO → DL | ε

4 D → T VL ;

5 VL → id VO

6 VO → VL | ε

7 T → int | float

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 27'

&

$

%

Production Rules

9 SL → S SL | ε

11 S → ES | IS | WS | IOS

15 ES → id := E ;

16 IS → if BE then SL EO

17 EO → end | else SL end

18 WS → while BE do SL end

19 IOS → scan id ; | print E ;

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 28'

&

$

%

FIRST()

The next step is to calculate the FIRST() sets of different

rules.

NT/Rule FIRST()

P (1) main

DL (2) int float

DO (3) int float

DO (3a) ε

D (4) int float

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 29'

&

$

%

FIRST()

NT/Rule FIRST()

VL (5) id

VO (6) id

VO (6a) ε

T (7) int

T (8) float

SL (9) id if while scan print

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 30'

&

$

%

FIRST()

NT/Rule FIRST()

SL (10) ε

S (11) id

S (12) if

S (13) while

S (14) scan print

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 31'

&

$

%

FIRST()

NT/Rule FIRST()

ES (15) id

IS (16) if

EO (17) end

EO (17a) else

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 32'

&

$

%

FIRST()

NT/Rule FIRST()

WS (18) while

IOS (19) scan

IOS (20) print

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 33'

&

$

%

Note

Three rules have ε-productions. Their
applications in a predictive parser depends on
what can follow the corresponding
non-terminals. So it is necessary to compute
the FOLLOW() sets corresponding to these
non-terminals. The rules are:
DO → ε(3a), VO → ε(6a), SL → ε(10).

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 34'

&

$

%

FOLLOW()

NT FOLLOW()

DO id if while scan print end

VO ;

SL end else

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 35'

&

$

%

Note

FOLLOW(DO) = FOLLOW(DL) (rule 2). The
FOLLOW(DL) = FIRST(SL) \ {ε}∪
FOLLOW(P) (rule 1) as SL is nullable (rule
10). Now FOLLOW(P) = {end}.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 36'

&

$

%

Note

It is clear from the previous computation that
no two production rules of the form A→ α1 | α2

have common elements in their FIRST() sets.
There is also no common element in the
FIRST() set of the production rule A→ α and
the FOLLOW() set of A in cases where A→ ε.
So the grammar is LL(1) and a predictive
parser can be constructed.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 37'

&

$

%

Recursive-Descent Parser

We write a function (may be recursive) for
every non-terminal. The function corresponding
to a non-terminal A returns ACCEPT if the
corresponding portion of the input can be
generated by A. Otherwise it returns a
REJECT with proper error message.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 38'

&

$

%

Example

Consider the production rule�� ��P → main DL SL end

The function corresponding to the non-terminal
P is as follows:

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 39'

&

$

%

int P()

int P(){

if(yylex() == MAIN){ // MAIN for "main"

nextToken = NOTOK;

if(DL() == ACCEPT)

if(SL() == ACCEPT) {

if(nextToken == NOTOK)

nextToken = yylex();

if(nextToken == END) // END is the token

return ACCEPT; // for "END"

else {

printf("end missing (1)\n");

return REJECT;

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 40'

&

$

%

}

}

else {

printf("SL mismatch (1)\n");

return REJECT;

}

else {

printf("DL mismatch (1)\n");

return REJECT;

}

}

else {

printf("main missing (1)\n");

return REJECT;

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 41'

&

$

%

}

}

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 42'

&

$

%

Note

The global variable nextToken stores the
look-ahead input (token). If there is a valid
nextToken, it is to be consumed before calling
yylex().
The stack of the push-down automaton is the
stack of the recursive call. The body of the
function corresponding to a non-terminal
corresponds to all its production rules.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 43'

&

$

%

Example

We now consider a non-terminal with

ε-production. �� ��DO → DL | ε

The members of FIRST(DL) are {int float}
and the elements of FOLLOW(DO) are
{id if while scan print end}.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 44'

&

$

%

int DO()

int FDO(){

if(nextToken == NOTOK)

nextToken = yylex();

if(nextToken == INT ||

nextToken == FLOAT)

if(DL() == ACCEPT) return ACCEPT;

else {

printf("DL mismatch (3)\n");

return REJECT;

}

else

if(nextToken == IDNTIFIER ||

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 45'

&

$

%

nextToken == IF ||

nextToken == WHILE ||

nextToken == SCAN ||

nextToken == PRINT ||

nextToken == END)

return ACCEPT;

else {

printf("DO follow mismatch (3)\n");

return REJECT;

}

}

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 46'

&

$

%

Note

The global variable nextToken is used to store
the look-ahead token. This helps to report an
error earlier.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 47'

&

$

%

Table Driven Predictive Parser

A non-recursive predictive parser can be
constructed that maintains a stack (explicitly)
and a table to select the appropriate production
rule.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 48'

&

$

%

Parsing Table

The rows of the predictive parser table are
indexed by the non-terminals and the columns
are indexed by the terminals including the
end-of-input marker ($). The content of the
table are production rules or error situations.
The table cannot have multiple entries.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 49'

&

$

%

Parsing Stack

The parsing stack can hold both terminals and
non-terminals. At the beginning, the stack
contains the end-of-stack marker ($) and the
start symbol on top of it.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 50'

&

$

%

Parsing Table Construction

• If A → α is a production rule and a ∈

FIRST(α), then P [A][a] = A → α.

• If A → ε is a production rule and a ∈

FOLLOW(A), then P [A][a] = A → ε.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 51'

&

$

%

Actions

• If the top-of-stack is a terminal symbol

(token) and matches with input token, both

are consumed. A mismatch is an error.

• If the top-of-stack is a non-terminal A, the

input token is a, P [A][a] has the entry

A→ α, then A is to be replaced by α, with

the head of α on the top of the stack.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 52'

&

$

%

Example

Consider the production rules of the

non-terminal SL.�� ��SL → S SL | ε

The FIRST(SL → S SL) =
{id if while scan print} and
FOLLOW(SL) ={end else}. So,
P [SL][IDNTIFIER] = P [SL][IF] = P [SL][WHILE] =
P [SL][SCAN] = P [SL][PRINT] = SL → S SL and
P [SL][END] = P [SL][ELSE] = SL → ε.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 53'

&

$

%

Note

Multiple entries in a table indicates that the
grammar is not LL(1). But it is interesting to
note that in some cases we can drop (with
proper consideration) some of these entries and
construct a parser.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 54'

&

$

%

Example

Consider the ambiguous grammar G1 for

expressions.

E → E + E | E − E | E ∗ E | E/E | (E) | ic

After the removal of left-recursion we get the
following ambiguous, no-left-recursive grammar:

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 55'

&

$

%

Example

E → (E)E ′ | icE ′

E ′ → +EE ′ | − EE ′ | ∗ EE ′ | /EE ′ | ε

We calculate FIRST(E ′) = {+ - * / ε } and
the FOLLOW(E ′) = FOLLOW(E) =
{$) + - * /}.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 56'

&

$

%

Example

Naturally,
P [E ′][±] = {E ′ → +EE ′, E ′ → ε} and
P [E ′][∗/] = {E ′ → ∗EE ′, E ′ → ε}.
We may drop the ε-productions from these four
places and get a nice parsing tablea.

aBut it does not work for all grammars. Consider S → aSa | bSb | ε.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 57'

&

$

%

Note

It seems that the removal of two ε-production

disambiguates the grammar. The corresponding

unambiguoes grammar G2 is as follows:

E → (E)E ′ | icE ′ | (E) | ic

E ′ → +E | − E | ∗ E | /E | ε

We have L(G1) = L(G2) and FOLLOW(E ′) =
{$)}, so there is no multiple entries in the
tablea.

aHow to maintain operator precedence?

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 58'

&

$

%

Error Recovery

• The token on the top of stack does not

match with the token in the input stream.

• The entry in the parsing table corresponding

to nonterminal on the top of stack and the

current input token is an error.

Lect 5 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 59'

&

$

%

Panic Mode

Lect 5 Goutam Biswas

