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Syntax Analysis

The syntactic or the structural correctness of a
program is checked in the syntax analysis phase
of compilation. The structural properties of
language constructs can be specified in different
ways. Different styles of specification are useful
for different purposes.
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Different Formalisms

• Syntax diagram (SD),

• Backus-Naur form (BNF), and

• Context-free grammar (CFG).
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Example

We take an example of simple variable

declaration in C languagea.

int a, b, c; float x, y;

aThis part of syntax is actually a regular expression.
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Syntax Diagram

,

;idtypevarDclr:
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Context-Free Grammar

< VDP > → ε | < VD >< VD OPT >

< VD > → < TYPE > id < ID OPT >

< ID OPT > → ε | , id < ID OPT >

< VD OPT > → ; | ; < VD >< VD OPT >

< TYPE > → int | float | · · ·
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Backus-Naur Form

< VDP > ::= ε | < VD >; { < VD > ; }

< VD > ::= < TYPE > id { , id }

This formalism is a beautiful mixture of CFG
and regular expression.
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Note

Our variable declaration is actually a regular

language with the following state transition

diagram:

,

;
0 1type id

2

3

4

id

type
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Note

Different styles of specification have different
purpose. SD is good for human understanding
and visualization. The BNF is very compact. It
is used for theoretical analysis and also in
automatic parser generating softwares. But for
most of our discussion we shall consider
structural specification in the form of a
context-free grammar (CFG).
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Note

There are non-context-free structural features

of a programming language that are handled

outside the formalism of grammar.

• Variable declaration and use:

... int sum ... sum = ..., this is of the

form xwywz and is not context-free.

• Matching of actual and formal parameters of

a function, matching of print format and the

corresponding expressions etc.

Lect 4 Goutam Biswas



Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 11'

&

$

%

Specification to Recognizer

The syntactic specification of a programming
language, written as a context-free grammar
can be be used to construct its parser by
synthesizing a push-down automaton (PDA)a.

aThis is similar to the synthesis of a scanner from the regular expressions of

the token classes.
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Context-Free Grammar

A context-free grammar (CFG) G is defined by
a 4-tuple of data (Σ, N, P, S), where Σ is a
finite set of terminals, N is a finite set of
non-terminals. P is a finite subset of
N × (Σ ∪N)∗. Elements of P are called
production or rewriting rules. The forth
element S is a distinguished member of N ,
called the start symbol or the axiom of the
grammar.
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Derivation and Reduction

If p = (A,α) ∈ P , we write it as A → α (“A

produces α” or “A can be replaced by α”). If

x = uAv ∈ (Σ ∪N)∗, then we can rewrite x as

y = uαv using the rule p ∈ P . Similarly,

y = uαv can be reduced to x = uAv.

The first process is called derivation and the

second process is called reduction.
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Language of a Grammar

The language of a grammar G is denoted by
L(G). The language is a subset of Σ∗. An
x ∈ Σ∗ is an element of L(G), if starting from
the start symbol S we can produce x by a finite
sequence of rewritinga. The sequence of
derivation of x may be written as S → xb.

aIn other word x can be reduced to the start symbol S.
bIn fact it is the reflexive-transitive closure of the single step derivation. We

abuse the same notation.
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Sentence and Sentential Form

Any α ∈ (N ∪ Σ)∗ derivable from the start
symbol S is called a sentential form of the
grammar. If α ∈ Σ∗, i.e. α ∈ L(G), then α is
called a sentence of the grammar.
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Parse Tree

Given a grammar G = (Σ, N, P, S), the parse

tree of a sentential form x of the grammar is a

rooted ordered tree with the following

properties:

• The root of the tree is labeled by the start

symbol S.

• The leaf nodes from left two right are

labeled by the symbols of x.

Lect 4 Goutam Biswas



Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 17'

&

$

%

Parse Tree

• Internal nodes are labeled by non-terminals

so that if an internal node is labeled by

A ∈ N and its children from left to right are

A1A2 · · ·An, then A → A1A2 · · ·An ∈ P .

• A leaf node may be labeled by ε is there is a

A → ε ∈ P and the parent of the leaf node

has label A.
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Example

Consider the following grammar for arithmetic

expressions:

G = ({id, ic, (, ),+,−, ∗, /}, {E, T, F}, P, E).

The set of production rules, P , are,

E → E + T | E − T | T

T → T ∗ F | T/F | F

F → id | ic | (E)
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Example

Two derivations of the sentence id + ic ∗ id
are,
d1: E → E + T → E + T ∗ F → E + F ∗ F →
T + F ∗ F → F + F ∗ F → F + ic ∗ F →
id+ ic ∗ F → id+ ic ∗ id
d2:
E → E+T → T +T → F +T → id+T → id+
T ∗F → id+F ∗F → id+ic∗F → id+ic∗id
It is clear that the derivations for a sentential
form need not be unique.
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Leftmost and Rightmost Derivations

A derivation is said to be leftmost if the

leftmost nonterminal of a sentential form is

rewritten to get the next sentential form. The

rightmost derivation is similarly defined.

Due to the context-free nature of the
production rules, any string that can be derived
by unrestricted derivation can also be derived
by leftmost(rightmost) derivation.
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Ambiguous Grammar

A grammar G is said to be ambiguous if there
is a sentence x ∈ L(G) that has two distinct
parse trees.
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Example

Our previous grammar of arithmetic

expressions is unambiguous. Following is an

ambiguous grammar for the same language:

G′ = ({id, ic, (, ),+,−, ∗, /}, {E}, P, E). The

production rules are,

E → E + E | E − E | E ∗ E | E/E |

id | ic | (E)

Number of non-terminals may be less in an
ambiguous grammar.
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Unique Parse Tree

E

E T+

T
F

*T

F F

id

id

ic
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Non-Unique Parse Tree

E

E +

*

E

E
E

id

id

ic

E

E E*

id+E
E

id
ic
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Note

Leftmost(rightmost) derivation is unique for an
unambiguous grammar but not in case of a
ambiguous grammar.
d3: E → E + E → id+ E → id+ E ∗ E →
id+ ic ∗ E → id+ ic ∗ id
d4: E → E ∗ E → E + E ∗ E → id+ E ∗ E →
id+ ic ∗ E → id+ ic ∗ id
The length of derivation of string with an
ambiguous grammar may be shorter.
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if-else Ambiguity

Consider the following production rules:

S → if(E)S | if(E) S else S | · · ·

A statement of the form
if(E1) if(E2) S2 else S3
can be parsed in two different ways. Normally
we associate the else to the nearest ifa.

aC compiler gives you a warning to disambiguate using curly braces.
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if-else Ambiguity

S

if ( E ) S

if ( E ) S else S

S

if ( E ) S else S

if ( E ) S
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if-else Modified

Consider the following production rules:

S → if(E)S | if(E) ES else S | · · ·

ES → if(E) ES else ES | · · ·

We restrict the statement that can appeare in
then-part. Now following statement has unique
parse tree.
if(E1) if(E2) S2 else S3
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if-else Unambiguous

if ( E )

S

S
Eif ( ) S else

S
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Note

Consider the following grammar G1 for

arithmetic expressions:

E → T + E | T − E | T

T → F ∗ T | F/T | F

F → id | ic | (E)

Is L(G) = L(G1)? Is there anything wrong
with this grammar?
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Problem

Consider another version of the grammar G2:

E → E ∗ T | E/T | T

T → T + F | T − F | F

F → id | ic | (E)

What is different in this grammar? Is
L(G) = L(G2).
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Problem

Construct parse trees corresponding to the
input 25-2-10 for G and G1. What are the
postorder sequences in these two cases (replace
the non-terminals by ε)?
Similarly, construct parse trees corresponding
to the input 5+2*10 for G and G2. Find out the
postorder sequences in these two cases?
Why postorder sequence?
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Postorder Sequences

• G: 25 2 - 10 -

G1: 25 2 10 - -

• G: 5 2 10 * +

G2: 5 2 + 10 *
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A Few Important Transformations
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Useless Symbols

A grammar may have useless symbols that can
be removed to produce a simpler grammar. A
symbol is useless if it does not appear in any
sentential form producing a sentence.
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Useless Symbols

We first remove all non-terminals that does not
produce any terminal string; then we remove all
the symbols (terminal or non-terminal) that
does not appear in any sentential form. These
two steps are to be followed in the given ordera.

aAs an example (HU), all useless symbols will not be removed if done in the

reverse order on the grammar S → AB | a and A → a.
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ε-Production

If the language of the grammar does not have
any ε, then we can free the grammar from
ε-production rules. If ε is in the language, we
can have only the start symbol with
ε-production rule and the remaining grammar
free of it.
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Example

S → 0A0 | 1B1 | BB

A → C

B → S | A

C → S | ε

All non-terminals are nullable.
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Example

After removal of ε-productions.

S → 0A0 | 1B1 | BB | 00 | 11 | B | ε

A → C

B → S | A

C → S
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Unit Production

A production of the form A → B may be
removed but not very important for
compilation.
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Normal Forms

A context-free grammar can be converted into
different normal forms e.g. Chomsky normal
form etc. These are useful for some decision
procedure e.g. CKY algorithm. But are not of
much importance for compilation.
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Left and Right Recursion

A CFG is called left-recursive if there is a
non-terminal A such that A → Aα after a finite
number of steps. Left-recursion from a grammar
is to be eliminated for a top-down parsera.

aThe right recursion can be similarly defined. It does not have so much

problem as we do not read input from right to left, but in a bottom-up parser

the stack size may be large due to right-recursion.
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Immediate Left-Recursion

A left-recursion is immediate if a production

rule of the form A → Aα is present in the

grammar. It is easy to eliminate an immediate

left-recursion. We certainly have production

rules of the form

A → Aα1 | β

where the first symbol of β does not produce
Aa.

aOtherwise A will be a useless symbol.
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Parse Tree

The parse tree with this pair of production

rules looks as follows:

A

A

β

α

The yield is βα.
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Rotation

We can rotate the parse tree to get the same

yield, but without the left-recursion.

A

A’
β

α

The new rules are A → βA′ and A′ → αA′ | ε.
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Removal of Immediate Left-Recursion

The original grammar is

A → Aα1 | Aαk | · · · | Aαk

A → β1 | β2 | · · · | βl

The transformed grammar is

A → β1A
′ | β2A

′ | · · · | βlA
′

A′ → α1A
′ | α2A

′ | · · · | αkA
′ | ε

Lect 4 Goutam Biswas
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Example

Original grammar:

E → E + T | T

T → T ∗ F | F

F → (E) | ic

The transformed grammar is

E → TE ′ E ′ → +TE ′ | ε

T → FT ′ T ′ → ∗FT ′ | ε

F → (E) | ic
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Change in the Parse Tree

Consider the input ic+ic*ic:

E

E +

*

E

T

T
F

T

F

ic

F

ic

ic

T E’

F

ic

+ T
E’

ε

F

* F
T’

T’

ε
ic

ic
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Removal of Indirect Left-Recursion

Consider the following grammar:

A → Aab | Ba | Cb | b

B → Aa | Db

C → Ab | Da

D → Bb | Ca

The grammar has indirect left-recursion:
A → Ba → Aaa etc.
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Removal of Indirect Left-Recursion

Following algorithm eliminates left-recursion.
First we order the non-terminals:
A1 < A2 < · · · < An
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Algorithm

for i = 1 to n

for j = 1 to i− 1

replace rule of the form Ai → Ajγ

by Ai → δ1γ | · · · | δkγ, where

Aj → δ1 | · · · | δk are the current

Aj productions

remove immediate left-recursion of

Ai-productions.
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Note

There is no left-recursion within the variables
A1, A2, · · · , Ai−1 and we are removing
left-recursion from Ai.
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Example

Let A < B < C < D. In the first-pass (i = 1) of

the outer loop, the immediate recursion of A is

removed.

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → Aa | Db

· · · · · · · · ·
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Example

In the second-pass (i = 2) of the outer loop,

B → Aa are replaced and immediate

left-recursions on B are removed.

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → BaA′a | CbA′a | bA′a | Db

· · · · · · · · ·
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Example

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → DbB′ | bA′aB′ | CbA′aB′

B′ → aA′aB′ | ε

C → Ab | Da

· · · · · · · · ·
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Example

In the third-pass (i = 3) of the outer loop,

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → DbB′ | bA′aB′ | CbA′aB′

B′ → aA′aB′ | ε

C → BaA′b | CbA′b | bA′b | Da

· · · · · · · · ·

Lect 4 Goutam Biswas
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Example

A → BaA′ | CbA′ | bA′

A′ → abA′ | ε

B → DbB′ | bA′aB′ | CbA′aB′

B′ → aA′aB′ | ε

C → DbB′aA′b | bA′aB′aA′b | CbA′aB′aA′b

CbA′b | bA′b | Da

· · · · · · · · ·
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Left Factoring

There may be more than one grammar rules for
a non-terminal so that the right hand side of
them have the same prefix. This creates a
problem of rule selection for the non-terminal in
some top-down parser. Such a grammar is
transformed by left factoring to change the
rules so that terminal prefixes of the right-hand
sides of the productions of a non-terminal are
unique.
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Example

If we have production rules of the form
A → xBα, A → xCβ, A → xDγ, we transform
them to A → xE and E → Bα | Cβ | Dγ,
where x ∈ Σ∗.
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Parsing

Using the grammar as a specification, a parser
tries to construct the derivation sequence
(reduction sequence or the parse tree) of a
given input (a program to compile). This
construction may be top-down or bottom-up.
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Top-Down Parsing

A top-down parser starts from the start symbol
(S) to generate the input string of tokens (x).
Given a sentential form α the parser tries to
determine a non-terminal A in α and one of its
production rules A → β, so that next sentential
form γ can be derived satisfying

S → α
A→β
−→ γ → x.
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Bottom-Up Parsing

A bottom-up parser starts from the input (x)
and tries to reduce it to the start symbol (S).
Given a sentential form α the parser tries to
determine β, a substring of α, that matches
with the right-hand side of a production
A → β, so that when β is replaced by A, the
previous sentential form γ is obtained,

satisfying S → γ
A→β
−→ α → x.
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Note

We always read (consume) the input from
left-to-right. In a top-down parser on the input
x, the snapshot is as follows:
A part of the input u has already been
generated/consumed i.e. x = uv and the parser
has the sentential form uAα.
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Note

Looking at the initial part of the remaining
input v it is necessary for the parser to decide
the correct production to get the next sentential
form. If it always expands the left-most
non-terminal, it is going by the leftmost
derivation. But the choice of production rule
may lead to dead-end or backtracking.
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Example

Consider the following grammar:

S → aSa | bSb | a | b

Given a sentential form aabaSabaa and the
remaining portion of the input ab· · · it is
impossible to decide by seeing one or two or
any finite number of input symbols, whether to
use the first or the third production rule to
generate ‘a’ of the input.
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Example

Consider the following grammar:

S → aSa | bSb | c

Given a sentential form aabaSabaa and the
remaining portion of the input abc· · ·, it is
clear from the first element of the input string
that the first production rule is to be applied to
get the next sentential form.
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Note

In case of a bottom-up parser on the input x,
the snapshot is as follows: The current
sentential form is αv where the remaining
portion of the input is v i.e. x = uv and α → u.
At this point the parser is to choose an
appropriate portion of αv as the right-hand side
β of some production A → β to reduce the
current sentential form to the previous
sentential form.
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Note

There may be more than one such choices
possible, and some of them may be incorrect. If
β is always a suffix of α, then we are following a
sequence of right-most derivation in reverse
order (reductions).
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Example

Consider the grammar:

E → E + E | E ∗ E | ic

Given the input ic+ic*ic· · ·, many reductions
are possible and in this case all of them will
finally lead to the start symbol. The previous
sentential form can be any one of the following
three, and there are many more:
E+ic*ic· · ·, ic+E*ic· · ·, ic+ic*E· · · etc. The
first one is the right sentential form.
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