
Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 1'

&

$

%

Lexical Analysis/Scanning

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 2'

&

$

%

Input and Output

The input is a stream of characters (ASCII

codes) of the source program.

The output is a stream of tokens or symbols
corresponding to different syntactic categories.
The output also contains attributes of tokens.
Examples of tokens are different keywords,
identifiers, constants, operators, delimiters etc.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 3'

&

$

%

Note

The scanner removes the comments, white

spaces, evaluates the constants, keeps track of

the line numbers etc.

This stage performs the main I/O and reduces

the complexity of the syntax analyzer.

The syntax analyzer invokes the scanner
whenever it requires a token.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 4'

&

$

%

Token

A token is an identifier (name/code)
corresponding to a syntactic category of the
language grammar. In other word it is the
terminal alphabet of the grammar. Often we
use an integer code for this.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 5'

&

$

%

Pattern

A pattern is a description (formal or informal)
of the set of objects corresponding to a terminal
(token) symbol of the grammar. Examples are
the set of identifier in C language, set of integer
constants etc.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 6'

&

$

%

Lexeme and Attribute

A lexeme is an actual string of characters that

matches with a pattern and generates a token.

An attribute of a token is a value that the
scanner extracts from the corresponding lexeme
and supplies to the syntax analyzer.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 7'

&

$

%

Specification of Token

The set of strings corresponding to a token
(terminals) of a programming language is often
a regular set and is specified by a regular
expression.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 8'

&

$

%

Scanner from the Specification

The collection of tokens of a programming
language can be specified by a set of regular
expressions. A scanner or lexical analyzer for
the language uses a DFA (recognizer of regular
languages) in its core. Different final states of
the DFA identifies different tokens. Synthesis of
this DFA from the set of regular expressions
can be automated.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 9'

&

$

%

Regular Expression

1. ε, ∅ and all a ∈ Σ are regular expressions.

2. If r and s are regular expressions, then so

are (r|s), (rs), (r∗) and (r). Nothing else is a

regular expression.

We can reduce the use of parenthesis by
introducing precedence and associativity rules.
Binary operators are left associative and the
precedence rule is ∗ > concat > |.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 10'

&

$

%

IEEE POSIX Regular Expression

An enlarged set of operators (defined) for the

regular expressions are introduced in different

softwares e.g. awk, grep, lex etc.a.

• \x is the character itself (a few exceptions

are \n, \t, \r etc.).

• . is any character other than ‘\n’.

• [xyz] is x | y | z.
aConsult the manual pages of lex/flex and Wikipedia for the details of IEEE

POSIX standard of regular expressions.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 11'

&

$

%

IEEE POSIX Regular Expression

• [abg-pT-Y] any character a, b,g, · · ·, p,

T, · · ·, Y.

• [^G-Q] not any one of G, H, · · ·, P, Q.

• r+ one or more r’s.

• r? one or zero r’s.

• r{2,} two or more r’s etc.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 12'

&

$

%

Language of a Regular Expression

The language of a regular expression is defined
in a usual way on the inductive structure of the
definition.
L(ε) = {ε}, L(∅) = ∅, L(a) = {a} for all a ∈ Σ,
L(r|s) = L(r) ∪ L(s), L(rs) = L(r)L(s),
L(r∗) = L(r)∗, L(r?) = L(r) ∪ {ε} etc.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 13'

&

$

%

C Identifier

The regular expression for the C identifier is
[a-zA-Z][a-zA-Z0-9]*
The first character is an underscore or an
English alphabet. From the second character on
a decimal digit can also be used.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 14'

&

$

%

Regular definition

We can give name to a regular expression for
the convenience of use. The name of a regular
expression can be used within the following
regular expressions.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 15'

&

$

%

Example of a Regular Definition

sign: + | - | ε

digit: [0-9]

digits: {digit}*

frac: \.{digits} | ε

frace: \.{digit}{digits}

expo: ((E | e){sign}{digit}{digit}?) | ε

num: {sign}(({digit}+ {frac} {expo}) |

({frace} {expo}))

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 16'

&

$

%

RE to NFA: Thompson’s Construction

We can mechanically construct a
non-deterministic finite automaton (NFA) with
only one initial and only one final state from a
given regular expression. The total number of
states of the NFA is linear in the number of
symbols of the regular expressiona

aThe construction is on the inductive structure of the definition of the regular

expression.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 17'

&

$

%

Base Cases

ε

φ

a

s

f

f

s

s

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 18'

&

$

%

Union and Concatenation

s1

s2

f1

f2

s f

s1 s2f1 f2s f

εε

ε

ε

ε

εεε ε

N(r)

N(s)

N(s) N(r)

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 19'

&

$

%

Kleene Closure

s1 f1s
εεε

f

εεε

ε

N(s)

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 20'

&

$

%

Properties of Thompson’s Construction

• |Q| ≤ 2length(r), where Q is the number of

states of the NFA and length(r) is the

number of alphabet and operator symbols in

r.

• Only one initial and one final state. No

incoming edge to the initial state and no

outgoing edge from the final state.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 21'

&

$

%

Properties of Thompson’s Construction

• At most one incoming and one outgoing

transition on a symbol of the alphabet. At

most two incoming and two outgoing

ǫ−transitions.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 22'

&

$

%

a+ (ab)∗ - An Example

a bεε ε

ε

εε

ε

a
ε

ε

ε

ε

0 1

2 3 4 56 7

8 9

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 23'

&

$

%

Context-Free Grammar of RE

The set of regular expression can be specified

by a context-free grammar.

E → ∅ | ε | σ, ∀σ ∈ Σ

→ E.E | E + E | E ∗ | (E)

We have put a ‘.’ for concatenation to make it
an operator grammar and have replaced ‘|’ by
‘+’ for claritya.

aThis ambiguous grammar can be used with proper precedence and associa-

tivity rules.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 24'

&

$

%

Syntax Directed Thompson’s Construction

Rules of Thompson’s construction can be
associated with the production rules of the
grammar. We assume the following data
structures.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 25'

&

$

%

Syntax Directed Thompson’s Construction

• Global state counter S initialized to 0, and

the state transition table: T[][].

• With every occurrence of the non-terminal E

we associate two attributes E.ini and E.fin

to store the initial and the final states of the

NFA, corresponding to the regular expression

generated by this occurrence of E.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 26'

&

$

%

Some of the Rules: Basis

E → ε: {T[S][ε] = S+1; E.ini = S;

S = S+1; E.fin = S; S = S+1;}

E → a: {T[S][a] = S+1; E.ini = S;

S = S+1; E.fin = S; S = S+1;}

The second rule depends on the symbol of the
alphabet

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 27'

&

$

%

Concatenation Rules

E → E1.E2: {E.ini = S; S = S+1;

E.fin = S+1; S = S+1;

T[E.ini][ε]=E1.ini;

T[E1.fin][ε]=E2.ini;

T[E2.fin][ε]=E.fin;}

Similarly other rules can be derived.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 28'

&

$

%

The Final NFA

The states of the final NFA are
{0, 1, · · · , S − 1}. The initial state is in E.ini
and the final state is in E.fin. The state
transitions are in T[][].

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 29'

&

$

%

a+ (a.b)∗ - An Example

+

()

*a

a b

.

T[10][]=E2.ini;
T[E1.fin][]=11;
T[E2.fin][]=11

E1.ini=0
E1.fin=1
T[0][a]=1

E3.ini=E4.ini
E3.fin=E4.fin

E5.ini=2
E5.fin=3
T[2][a]=3

E6.ini=4
E6.fin=5
T[4][b]=5

E4.ini=6
E4.fin=7
T[6][]=E5.ini (2); T[E5.fin(3)][]=E6.ini (4);
T[E6.fin(5)][]=7

T[8][]=E3.ini; T[E3.fin][]=9;
E2.ini=8; E2.fin=9;T[8][]=9;

E

E1 E2 T[E3.fin][]=E3.ini

E3

E4

E5

E.ini=10; E.fin=11; T[10][]=E1.ini;

E6

Q={0,1, ..., 11}

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 30'

&

$

%

NFA to DFA

Let the constructed ε-NFA be (N,Σ, δn, n0, nF).
By taking ε-closure of states and doing the
subset construction we can get an equivalent
DFA (Q,Σ, δd, q0, QF).

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 31'

&

$

%

Algorithm

Q = L = ε-closure({q0})

while(L 6= ∅)

q = removeElm(L)

for all σ ∈ Σ

t = ε-closure(δn(q, σ))

T [q][σ] = t

if t 6∈ Q

Q = Q ∪ {t}

L = L ∪ {t}

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 32'

&

$

%

ε-closure(T)

for all q ∈ T push(St, q)

εT = T

while(isEmpty(St) == false)

t = pop(St)

for all u ∈ δ(t, ε)

if u 6∈ εT

εT = εT ∪ {u}

push(St, u)

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 33'

&

$

%

Note

The time complexity of the ε-closure algorithm
for each state is O(|M |) = O(|N |+ |δ|).

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 34'

&

$

%

Final State of the DFA

The set of final states of the equivalent DFA is
QF = {q ∈ Q : nF ∈ q}. It is to be noted that
different final states will recognize different
tokens. It is also possible that one final state
identifies more than one tokens.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 35'

&

$

%

Time Complexity of Subset Construction

The size of Q is O(2|N |) and so the time
complexity is also O(2|N |), where N is the set of
states of the NFA. But this is one time
construction.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 36'

&

$

%

a+ (ab)∗ - NFA to DFA

The state transition table of the DFA is

Initial Final State

State a b

A : {0, 2, 6, 7, 8, 9} {1, 3, 4, 9} ∅

B : {1, 3, 4, 9} ∅ {2, 5, 7, 9}

C : {2, 5, 7, 9} {3, 4} ∅

D : {3, 4} ∅ {2, 5, 7, 9}

∅ ∅ ∅

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 37'

&

$

%

a+ (ab)∗ - NFA to DFA

a
a

a
a

a

b bb

b

b

φ

D

A B

C

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 38'

&

$

%

Note

It may be of advantage to drop the transitions
to ∅ for designing a scanner. This makes the
DFA incompletely specified. Absence of a
transition from a final state may identify a
token.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 39'

&

$

%

DFA State Minimization

The constructed DFA may have set of
equivalent statesa and can be minimized. It is
to be noted that the time complexity of a
scanner of a DFA with a larger number of
states is not different from the scanner of a
DFA having a smaller number of states. Their
code sizes are different and that may give rise
to some difference in their speeds.

aLet M = (Q,Σ, δ, s, F) be a DFA. Two states p, q ∈ Q are said to be equiv-

alent if there is no x ∈ Σ∗ so that δ(p, x) 6= δ(q, x).

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 40'

&

$

%

DFA State Minimization

We start with two non-equivalent partitions of

Q: F and Q \ F .

If p, q belongs to the same initial partition P
but there is some σ ∈ Σ so that δ(p, σ) ∈ P1

and δ(q, σ) ∈ P2, where P1 and P2 are two
distinct partitions, then p, q cannot remain in
the same partition i.e. they are not equivalent.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 41'

&

$

%

DFA to Scanner

Given a regular expression r we can construct
the recognizer of L(r). For every token class or
syntactic category of a language we have a
regular expression. Let {r1, r2, · · · , rk} be the
total collection of all regular expressions of a
language. The regular expression
r = r1|r2| · · · |rk represents objects of all
syntactic categories.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 42'

&

$

%

DFA to Scanner

Give the NFAs of r1, r2, · · · , rk we construct the
NFA for r = r1|r2| · · · |rk by introducing a new
start state and adding ε-transitions from this
state to the initial states of the component
NFAs. But we keep different final states as they
are to identify different token classes.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 43'

&

$

%

Final Composite NFA

sr1 fr1

sr2 fr2

srk frk

ε

ε

ε

s

N(r1)

N(r2)

N(rk)

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 44'

&

$

%

DFA to Scanner

The DFA corresponding to r can be
constructed from the composite NFA. It can be
implemented as a C program that will be used
as a scanner of the language. But the following
points are to be noted.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 45'

&

$

%

Note

A program is not a single word but a stream of

words and the notion of acceptance of a scanner

should be different from a simple DFA. The

following questions are of importance:

• when does the scanner report an acceptance?

• what does it do if the word (lexeme) matches

with more than one regular expressions?

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 46'

&

$

%

Example

Consider the following subset of C language
operators: + ++ += * *= < << <= <<=

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 47'

&

$

%

State Transition Diagram

$

$

$

$

1

2

3

4

5

6

7

8

9

+ +

=

* =

<
< =

=

other

other

other

other

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 48'

&

$

%

Note

At the final state 1 we know that we have “++”.
But we cannot decide whether it is pre or post
increment operator. Though scanner can take
that decision, but it is better to delay it for the
parser.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 49'

&

$

%

Note

At the final state 3 we know that we have ‘+’.
But we do not know whether it is binary or
unary. Again that decision is defered. Moreover
the last consumed symbol is not part of the
lexeme. It is a look-ahead symbol. We mark
such a final state with the number of look-ahead
symbols to un-read before going back to the
start state. Here we have done that by one $.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 50'

&

$

%

Note

• There are situations where there may be

more than one look-ahead.

Fortran:
DO 10 I = 1, 10 and DO 10 I = 1.10
The first one is a do-loop and the second one is
an assignment DO10I=1.10.
PL/I:
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
IF THEN are not reserved as keyword.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 51'

&

$

%

Maximum Word Length Matching

The scanner will go on reading input as long as
there is a transition. Let there be no transitions
for the current state q on the input σ (the
machine is incompletely specified). The state q
may or may not be final.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 52'

&

$

%

q is Final

If the final state q corresponds to only one
regular expression ri, the scanner returns the
corresponding tokena. But if it matches with
more than one regular expressions then it is
necessary to resolve the conflict. This is often
done by specifying priority of expressions e.g.
keyword over an identifier.

aIt is necessary to identify the final state with the regular expression ri.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 53'

&

$

%

q is not Final

It is possible that while consuming symbols the
scanner has crossed one or more final states.
The decision may be to report the last final
state. But then it is necessary to keep track of
the final states and the position of the input.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 54'

&

$

%

Components of a Scanner

1. The transition table of the DFA or NFA.

2. Set of actions corresponding to a final states.

3. Other essential functions.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 55'

&

$

%

Maximum Prefix on NFA

1. Read input and keep track of the sequence of

the set of states. Stop when no more

transition is possible (maximum prefix).

2. Trace back the last set of states with a final

state.

3. Push back the look-ahead symbols in the

buffer and emit appropriate token along with

attribute value(s).

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 56'

&

$

%

Note

It is possible that the last set of states has more
than one final states corresponding to different
patterns. Take action corresponding to a
pattern with highest prioritya.

aA pattern specified earlier may have higher priority.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 57'

&

$

%

From DFA to Code

Three possible implementations of DFA -

• table driven,

• direct coded,

• hand coded.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 58'

&

$

%

Table Driven Scanner

There is a driver code and a set of tables. The

driver code essentially has three parts:

• Initialisation,

• Main scanner loop,

• Roll-back loop,

• Token or error return.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 59'

&

$

%

Initialisation

currect state <-- start state
lexeme <-- Nil
push(stack,$)

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 60'

&

$

%

Main Scanner Loop

while currect state not = error state
lexeme <-- lexme + (c = getchar())
if current state is an accept state

clear(stack)
push(stack, current state)
sym <-- translate[c]
next state <-- delta(current state, sym)

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 61'

&

$

%

Roll Back Loop

while not a final state or stack is not empty
state <-- pop(stack)
unget() last symbol of lexeme

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 62'

&

$

%

Token or Error

if final state
return token[state]
else Error

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 63'

&

$

%

Tables

• translate[] converts a character to a DFA

symbol (reduces the size of the alphabet).

• delta[] is the state transition table.

• token[] have token values corresponding to

final states.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 64'

&

$

%

Note

At times roll-back may be costly - consider the
language ab|(ab)∗c and the input ababababab$.
There will be roll-back of 8 + 6 + 4 + 2 = 20
characters.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 65'

&

$

%

Direct Coded Scanner

• Each state is implemented as a fragment of

code.

• It eliminates memory reference for transition

table access.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 66'

&

$

%

Code Corresponding to a State

• Code is labelled by the state name.

• Read a character and append it to lexeme.

• Update the roll-back stack.

• Go to next appropriate state - a valid

transition, roll-back and token return state

etc.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 67'

&

$

%

Reading Characters: Input Buffer

A scanner or lexical analyser reads the input
character by character. The process will be
very inefficient if it sends request to the OS for
every character read.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 68'

&

$

%

Input Buffer

• OS reads a block of data, supplies the

requesting process the required amount, and

stored the remaining portion in a buffer

called buffer cache. In subsequent calls, the

actual IO does not take place as long as the

data is available in the buffer.

• Requesting OS for single character is also

costly due to context-switching overhead. So

the scanner uses its own buffer.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 69'

&

$

%

Input Buffer

• A buffer at its end may contain an initial

portion of a lexeme. It creates problem in

refilling the buffer. So a 2-buffer scheme is

used. The buffers are filled alternatively.

• A sentinel-character is placed at the

end-of-buffer to avoid two comparisons -

character and end-of-buffer.

• We may run out of buffer space for a long

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 70'

&

$

%

character string or a comment.

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 71'

&

$

%

Brozozowski’s Minimal DFA from NFA

Let N be be an NFA. The reverse of N , the
NFA NR, constructed by introducing (i) a new
state as its initial state and making
ε-transitions from it to all the final states of N ,
(ii) making the initial state of N as the final
state, and (iii) reversing all transitions of N .
We call NR = reverse(N).

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 72'

&

$

%

Brozozowski’s Minimal DFA from NFA

reachable(N) is the subset of states and
transitions of N that are reachable from the
start state.
subset(N) gives the DFA M equivalent to N .

Lect 2 Goutam Biswas

Compilers: CS31003 Computer Sc & Engg: IIT Kharagpur 73'

&

$

%

Brozozowski’s Minimal DFA from NFA

The minimal DFA M equivalent to the given
NFA N is
reachable(subset(reverse(reachable(subset(reverse(N))))))

Lect 2 Goutam Biswas

