Computer Science & Engineering Department IIT Kharagpur Computational Number Theory: CS60094 Tutorial V

Instructor: Goutam Biswas

Spring Semester 2014-2015

- 1. Prove that for any positive integer $c, n! = \Omega(c^n)$.
- 2. Prove that $\frac{2^{2n}}{2n} < \binom{2n}{n} < 2^{2n}$, for all $n \ge 1$.
- 3. If n is a positive integer and p is a prime, then $\nu_p(n) = k$, is the largest positive integer such that $p^k | n$. Prove that for all integers $n \ge 1$ and for all primes p, $\nu_p(n!) = \sum_{i\ge 1} \lfloor \frac{n}{p^i} \rfloor$.
- 4. If $l = \nu_p(\binom{2n}{n})$ then $p^l \leq 2n$.
- 5. Prove that $\binom{2n}{n} \leq (2n)^{\pi(2n)}$, where $\pi(x)$ is the number of primes $\leq x$.
- 6. Prove that for all integers $n \ge 2, \pi(n) \ge \frac{n}{\log n} 2$
- 7. A Carmichale number is an odd positive integer n > 1 such that for all $a \in \mathbb{Z}_n^*$, $a^{n-1} \equiv 1 \pmod{n}$. Prove that the following two conditions are equivalent to the given definition (d). Note that $\mathbb{Z}_{p^k}^*$ is a cyclic group when p is an odd prime.
 - (a) $a^n \equiv a \pmod{n}$ for all $a \in \mathbb{Z}$.
 - (b) n is starfree and for all prime p, if p|n, then p-1|n-1.