Computer Science & Engineering Department IIT Kharagpur Computational Number Theory: CS60094 Tutorial IV

Instructor: Goutam Biswas

Spring Semester 2014-2015

- 1. If \mathbb{Z}_n^* is cyclic then there are $\phi(\phi(n))$ generators of it i.e. if n has a primitive root, then there are $\phi(\phi(n))$ primitive roots.
- 2. Prove that a finite integral domain is a field.
- 3. A subring J of a ring R is called an *ideal* of R if for all $a \in J$ and $r \in R$, both ar and ra are in J. If R is commutative, then one of the conditions is sufficient.
 - (a) If R is commutative and $a \in R$, prove that $J = \{ra : r \in R\}$ is an ideal.
 - (b) If R is a commutative ring and $a \in R$, then $\langle a \rangle = \{ra + na : r \in R, n \in \mathbb{Z}\}$ is the smallest ideal containing a.
 - (c) If R is a commutative ring with identity and $a \in R$, then $\langle a \rangle = \{ra : r \in R, n \in \mathbb{Z}\}$ is the smallest ideal containing a.
- 4. If R is a commutative ring and $a \in R$, then the ideal $\langle a \rangle$ is called a principlal ideal generated by a. If J is an ideal we define a binary relation on R modulo J: $a, b \in R$ are related if $a - b \in J$. We write $a \equiv b \pmod{J}$.
 - (a) Prove that " $\equiv \pmod{J}$ " is an equivalence relation.
 - (b) What is the equivalence class [a]?
 - (c) Define addition '+' and multiplication '×' on the quotient set R/J so that it forms a ring.