Computer Science & Engineering Department IIT Kharagpur Computational Number Theory: CS60094 Tutorial III

Instructor: Goutam Biswas

Spring Semester 2014-2015

- 1. Let (G, \cdot, e) be a group and $H \subseteq G$ is finite, non-empty, and closed under the group operation. Show that H is a subgroup of G.
- 2. Let (G, \cdot, e) be an abelian group. We define $G^m = \{a^m : a \in G\}$, where *m* is an integer $(a^0 = e, a^k = a \cdot a^{k-1}, \text{ and } a^{-k} = (a^{-1})^k$, where *k* is a positive integer). Prove that G^m is a subgroup of *G*.
- 3. Let (G, \cdot, e_G) and $(H, *, e_H)$ be two groups. A map $f : G \to H$ is called a homomorphism if it is compatible with with the operations i.e. $f(a \cdot b) = f(a) * f(b)$. Show that (i) $f(e_G) = e_H$, and (ii) $f(a^{-1}) = f(a)^{-1}$.
- 4. Let (G, \cdot, e_G) and $(H, *, e_H)$ be two groups. The map $f : G \to H$ is a homomorphism and a bijection. Show that $f^{-1} : H \to G$ is also a homomorphism. [Note: a bijective homomorphism is called isomorphism]
- 5. An isomorphism from (G, \cdot, e) to itself is called an *automorphism*. Give an automorphism on G other than identity or the one shown in (7) when the group is commutative.
- 6. Let (G, ·, e) be a group and Aut(G) be the collection of automorphisms on G.
 Prove that (Aut(G), ∘, 1_G) is a group where '∘' is function composition and 1_G is the identity map.
- 7. Let (G, \cdot, e) be a group and $a \in G$. We define $f_a : G \to G$ as $f : b \mapsto a \cdot b \cdot a^{-1}$.

Prove that f_a is an automorphism (inner automorphism) on G.

8. Let (G, \cdot, e_G) and $(H, *, e_H)$ be two groups and the map $f : G \to H$ be a homomorphism. We define Ker $f = \{g \in G : f(g) = e_H\}$. Prove that Ker f is a subgroup of G.

- 9. Let (G, \cdot, e_G) and $(H, *, e_H)$ be two groups and the map $f : G \to H$ be a homomorphism. Prove that for all $a \in G$ and $b \in Ker f$, $aba^{-1} \in Ker f$.
- 10. Let (G, ·, e_G) and (H, *, e_H) be two groups; the map f : G → H be a homomorphism.
 (a) Let K be a subgroup of G. Is the homomorphic image of K, a subgroup of H?
 (b) Let K be a subgroup of H. Let The homomorphic reacting of K.

(b) Let K be a subgroup of H. Is The homomorphic pre-image of K, a subgroup of G?