Computer Science & Engineering Department IIT Kharagpur Computational Number Theory: CS60094 Tutorial I

Instructor: Goutam Biswas

Spring Semester 2014-2015

- 1. Give the Euclid's proof that the set of primes \mathbb{P} is infinite.
- 2. Prove that any two element of the Fermat sequence, $F_n = 2^{2^n} + 1$, $n \in \mathbb{N}$, are relatively prime. What is your conclusion from this.
- 3. Assume that the collection of all primes \mathbb{P} is finite, and let p be the largest prime. Prove that any prime divisor q of $2^p 1$ is larger than p. What is your conclusion?
- 4. If $2^n + 1$ is a prime, then prove that n is a power of 2.
- 5. If there are finite number of primes, then the sum $\sum_{p \in \mathbb{P}} \frac{1}{p}$ converges. If we can prove that the sum diverges, then certainly there are infinite number of primes. We assume that $\sum_{p \in \mathbb{P}} \frac{1}{p}$ converges. Let $p_1 = 2, p_2 = 3, p_3 = \cdots$ be the sequence of primes in increasing order. There is some k such that $\sum_{i \ge k+1} \frac{1}{p_i} < \frac{1}{2}$ (as the sequence converges). We call $\mathbb{P}_s = \{p_1, \cdots, p_k\}$, the set of small primes and $\mathbb{P}_l = \{p_{k+1}, \cdots\}$, the set of large primes.

Let N be any positive integer. We partition $\{1, \dots, N\} = A_s \cup A_l$, where all prime factors of each element of A_s are small primes and each element of A_l have at least one big prime factor. We include 1 in A_s .

It is clear that $N = N_s + N_l$, where $N_s = |A_s|$ and $N_l = |A_l|$.

- (a) Prove that $N_l < \frac{N}{2}$.
- (b) Prove that $N_s \leq 2^k \sqrt{N}$.
- (c) Prove that for some large $N, N > N_s + N_l$. What is your final conclusion?
- 6. Prove that the n^{th} prime $p_n \leq 2^{2^{n-1}}$.
- 7. Let $\pi(x) = |\{p \in \mathbb{P} : p \leq x\}|$, where $x \in \mathbb{R}^+$ is a positive real, and $n \leq x < n+1$, where $n \in \mathbb{N}$. Prove the following facts:

- (a) Prove that $\log x \leq \sum_{i=1}^{n} \frac{1}{i}$. Also prove that $\log x \leq \sum \frac{1}{i}$, the sum is over all $i \in \mathbb{N}$ whose prime factors are in $\pi(x)$.
- (b) Prove that $\log x \le \pi(x) + 1$.
- (c) What is your final conclusion?