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1 Test for prime II

1.1 Primality by Quadratic Residue

It is known from the Fuler’s Criterion that for an odd prime p, if an integer a
is a quadratic residue modulo p,* then T =1 (mod p). If a is a quadratic
non-residue modulo p, then a’r = p—1=—1(mod p).

Similarly, the Legendre and Jacobi symbol coincides for a prime?. (%) =1
if a is a quadratic residue modulo p, and is —1 if a is a quadratic non-residue
modulo p.

We can compute a"= mod n by fast exponentiation and we also have effi-

a

cient algorithm to compute (;)

Proposition 1. If p is an odd prime, then

a"T x (E) = 1(mod p) for all a € Z,.
b

QED.
The equivalent contrapositive statement is

If n > 3 is an odd integer, a € Z and a7 x (%) # 1(mod n), then n cannot
be prime.

Example 1. Let n = 15. The elements of Z7; = {1,2,4,7,8,11,13,14}. The
values of (%) x a” mod 15 are as follows:

a 11214781113 |14

(&) xa"mod15 |1 |8[4]2[2[4[8 |1

So there are large number of witnesses to show that 15 is a composite number.
Definition 1: Let n > 3 be an odd composite number. An integer a € Z, is
called an Euler-witness or E-witness for n if (a%1 mod n) x (%) # 1. Otherwise
it is called an E-liar,

LE={aeZ:: (a_ x (3))
n

Example 2. Consider n = 225 and a = 26. We have 26> 2 mod 225 =

26112 mod 225 = 1 and
26\ (13 2 .
225/  \152/\152)

So 26 is an E-liar for the composite 225. But 2''2 mod 225 = 196, so 2 is an
E-witness of compositeness of 225.

A few other E-liars for 225 are 82, 107, 118, 143 etc.

Proposition 2. Let n > 3 be an odd composite number. Then every E-liar
for n is also an F-liar for n. QED.

1(mod n)}.

Ip fa and a is a perfect square modulo p.

2We have seen that for a composite number n, (%) = 1 does not mean that a is a quadratic
residue modulo n. As an example (3—35) = (%) (%) = (—1) x (—1) = 1. But There is no solution
of 22 = 3(mod 35).



Proof: Let a be an E-liar for n. So a"z" x (%) =1 (mod n). The value of

(£) € {1,—1} (it cannot be equal to 0 as the product is congruent to 1). So the

value of )
(anTl X (ﬁ)) =1 (mod n).
n

The value of (%)2 = 1, implies that a"~! = 1(mod n) i.e. a is an F-liar for n.
QED.

If L C LE then an F-witness of n is also an E-witness of ni.e. W C WE,

We prove that more than half of the elements of Z,, are E-witnesses.
Proposition 3. Let n > 3 be an odd composite number. The set of E-liars
of n, LY is a proper subgroup of Z. QED.

Proof: We know LE C LE C 7Z*. We prove that L is closed under the group
operation.
Let a,b € LE.

(a-b)"T x <“Tb) = <a x (%)) : <b x <%>) =1-1=1(mod n).

Finally we show that all elements of Z, are not E-liars. There is at least
one E-witness in Z;. This will imply LZ is a proper subgroup. We consider
two cases.

Case I: Let n = p¥ - m, where p is an odd prime, k > 2 and m is an odd
number relatively prime to p.

(a) If m = 1, we choose a = p+ 1 and claim that a is an F-witness of n. So
it is also an E-witness of n.

ged(a,n) = ged(p + 1,pF) = 1 implies that a € Z. Now we show that a is
an F-witness.

If a is an F-liar, then a"~! = 1 (mod n), implies that a”~! = 1 (mod p?)
as p? is a divisor of n. So we have

1\ .
aA"r=0+p)"rt=1+(n—1)p+ Z (n ; >pZ =1+ (n—1)p (mod p?).
2<i<n—1

p?la"~1 — 1, so p?|(n — 1)p. Hence p|n — 1. But that is impossible as p|n. So a
is an F-witness.
(b) If m > 3, we take a as a solution of the pair of congruence

1+p (mod p?),
1 (mod m)

By the CRT there is a solution a, 1 < a < p2 -m<n.

Asa =1+p (mod p?), a = 1+ p (mod p), implies that pla — 1. Hence
ged(a,p*) = 1.

Similarly, m|a — 1, so ged(a,m) = 1. As n = p* - m, the value of ged(a,n)
cannot be larger than 1. Hence a € Z;,.

Our proof that this a cannot be an F-liar is similar to the case of m = 1.

Case II: n may be square-free and is a product of several distinct primes.
Let n = p - m where p is an odd prime and m > 3 is an odd square free integer
so that p fm.

Let b € Z; be a quadratic non-residue modulo p i.e. (%) = —1. We consider
the following congruence

b (mod p),
= 1 (mod m).

By CRT there is a solution a of this pair of congruence, 1 < a <p-m =n. We
prove that a € Z;, and a is an E-witness.

pla—band 1 < b < p, sop Ja. Also ged(a,m) = 1, hence ged(a,n) =
ged(a,p-m) =1. So a € Z;,. We also have

(0)=0) (=6 @) =amn



If a is an E-liar, then a2 = —1 (mod n). On the other hand m is a divisor of

n,soa"s =—1 (mod m). But that contradicts the fact that a =1 (mod m).
So a is an E-witness of n. QED.

The size of E-liar is < @ < ”772 So at least half of the elements of Z),
are E-witnesses.

1.2 Solovay-Strassen Test

R. Solovay and V. Strassen proposed the following randomized test in 1977.

isprimeSS(n) // n is odd > 3
a < rand{2,--- ,n—2}
if 2”7 x (4) mod n #1
return O
return 1
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