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1 Test for prime II

1.1 Primality by Quadratic Residue

It is known from the Euler’s Criterion that for an odd prime p, if an integer a

is a quadratic residue modulo p,1 then a
p−1

2 ≡ 1 (mod p). If a is a quadratic

non-residue modulo p, then a
p−1

2 ≡ p− 1 ≡ −1 (mod p).
Similarly, the Legendre and Jacobi symbol coincides for a prime2.

(

a
p

)

= 1
if a is a quadratic residue modulo p, and is −1 if a is a quadratic non-residue

modulo p.

We can compute a
p−1

2 mod n by fast exponentiation and we also have effi-
cient algorithm to compute

(

a
n

)

.
Proposition 1. If p is an odd prime, then

a
p−1

2 ×

(

a

p

)

≡ 1(mod p) for all a ∈ Z
∗
p.

QED.

The equivalent contrapositive statement is

If n ≥ 3 is an odd integer, a ∈ Z
∗
n and a

n−1

2 ×
(

a
n

)

6≡ 1(mod n), then n cannot
be prime.

Example 1. Let n = 15. The elements of Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}. The

values of
(

a
15

)

× a7 mod 15 are as follows:

a 1 2 4 7 8 11 13 14
(

a
15

)

× a7 mod 15 1 8 4 2 2 4 8 1

So there are large number of witnesses to show that 15 is a composite number.
Definition 1: Let n ≥ 3 be an odd composite number. An integer a ∈ Zn is

called an Euler-witness or E-witness for n if (a
n−1

2 mod n)×
(

a
n

)

6= 1. Otherwise
it is called an E-liar,

LE
n = {a ∈ Z

∗
n :

(

a
n−1

2 ×

(

a

n

))

≡ 1(mod n)}.

Example 2. Consider n = 225 and a = 26. We have 26
225−1

2 mod 225 =

26112 mod 225 = 1 and
(

26

225

)

=

(

13

152

)(

2

152

)

= 1.

So 26 is an E-liar for the composite 225. But 2112 mod 225 = 196, so 2 is an
E-witness of compositeness of 225.
A few other E-liars for 225 are 82, 107, 118, 143 etc.
Proposition 2. Let n ≥ 3 be an odd composite number. Then every E-liar
for n is also an F -liar for n. QED.

1
p 6 |a and a is a perfect square modulo p.

2We have seen that for a composite number n,
(

a

n

)

= 1 does not mean that a is a quadratic

residue modulo n. As an example
(

3

35

)

=
(

3

5

)(

3

7

)

= (−1)× (−1) = 1. But There is no solution

of x2 ≡ 3(mod 35).
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Proof: Let a be an E-liar for n. So a
n−1

2 ×
(

a
n

)

≡ 1 (mod n). The value of
(

a
n

)

∈ {1,−1} (it cannot be equal to 0 as the product is congruent to 1). So the
value of

(

a
n−1

2 ×

(

a

n

))2

≡ 1 (mod n).

The value of
(

a
n

)2
= 1, implies that an−1 ≡ 1(mod n) i.e. a is an F -liar for n.

QED.

If LE
n ⊆ LF

n , then an F -witness of n is also an E-witness of n i.e. WF
n ⊆WE

n .
We prove that more than half of the elements of Z∗

n are E-witnesses.
Proposition 3. Let n ≥ 3 be an odd composite number. The set of E-liars
of n, LE

n , is a proper subgroup of Z∗
n. QED.

Proof: We know LE
n ⊆ LF

n ⊆ Z
∗
n. We prove that LE

n is closed under the group
operation.
Let a, b ∈ LE

n .

(a · b)
n−1

2 ×

(

a · b

n

)

≡

(

a
n−1

2 ×

(

a

n

))

·

(

b
n−1

2 ×

(

b

n

))

≡ 1 · 1 ≡ 1(mod n).

Finally we show that all elements of Z∗
n are not E-liars. There is at least

one E-witness in Z
∗
n. This will imply LE

n is a proper subgroup. We consider
two cases.

Case I: Let n = pk · m, where p is an odd prime, k ≥ 2 and m is an odd
number relatively prime to p.

(a) If m = 1, we choose a = p+ 1 and claim that a is an F -witness of n. So
it is also an E-witness of n.

gcd(a, n) = gcd(p + 1, pk) = 1 implies that a ∈ Z
∗
n. Now we show that a is

an F -witness.
If a is an F -liar, then an−1 ≡ 1 (mod n), implies that an−1 ≡ 1 (mod p2)

as p2 is a divisor of n. So we have

an−1 ≡ (1+p)n−1 ≡ 1+(n−1)p+
∑

2≤i≤n−1

(

n− 1

i

)

pi ≡ 1+(n−1)p (mod p2).

p2|an−1 − 1, so p2|(n− 1)p. Hence p|n− 1. But that is impossible as p|n. So a

is an E-witness.
(b) If m ≥ 3, we take a as a solution of the pair of congruence

x ≡ 1 + p (mod p2),

x ≡ 1 (mod m)

By the CRT there is a solution a, 1 ≤ a < p2 ·m ≤ n.
As a ≡ 1 + p (mod p2), a ≡ 1 + p (mod p), implies that p|a − 1. Hence

gcd(a, pk) = 1.
Similarly, m|a − 1, so gcd(a,m) = 1. As n = pk ·m, the value of gcd(a, n)

cannot be larger than 1. Hence a ∈ Z
∗
n.

Our proof that this a cannot be an F -liar is similar to the case of m = 1.
Case II: n may be square-free and is a product of several distinct primes.

Let n = p ·m where p is an odd prime and m ≥ 3 is an odd square free integer
so that p 6 |m.

Let b ∈ Z
∗
p be a quadratic non-residue modulo p i.e.

(

b
p

)

= −1. We consider
the following congruence

x ≡ b (mod p),

x ≡ 1 (mod m).

By CRT there is a solution a of this pair of congruence, 1 ≤ a < p ·m = n. We
prove that a ∈ Z

∗
n and a is an E-witness.

p|a − b and 1 ≤ b < p, so p 6 |a. Also gcd(a,m) = 1, hence gcd(a, n) =
gcd(a, p ·m) = 1. So a ∈ Z

∗
n. We also have

(

a

n

)

=

(

a

p

)

·

(

a

m

)

=

(

b

p

)

·

(

1

m

)

= −1 · 1 = −1.
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If a is an E-liar, then a
n−1

2 ≡ −1 (mod n). On the other hand m is a divisor of

n, so a
n−1

2 ≡ −1 (mod m). But that contradicts the fact that a ≡ 1 (mod m).
So a is an E-witness of n. QED.

The size of E-liar is ≤ φ(n)
2 ≤ n−2

2 . So at least half of the elements of Z∗
n

are E-witnesses.

1.2 Solovay-Strassen Test

R. Solovay and V. Strassen proposed the following randomized test in 1977.

isprimeSS(n) // n is odd ≥ 3
a ← rand{2, · · · , n− 2}

if a
n−1

2 ×
(

a
n

)

mod n 6= 1
return 0

return 1
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