
Computer Science & Engineering Department
IIT Kharagpur

Computational Number Theory: CS60094
Lecture VII

Instructor: Goutam Biswas Spring Semester 2014-2015

1 Test for prime III (Agrawal, Kayal, and Saxena)

Miller’s polynomial time prime test algorithm depends on the truth of the Ex-

tended Riemann Hypothesis1 which is unknown. In August 6, 2002, Agrawal,
Kayal and Saxena from IIT Kanpur proposed the first polynomial time algorithm
for testing prime. This is a remarkable discovery in theory of computing, but
it has little practical utility. Probabilistic decision procedures e.g. Miller-Rabin
is much more suitable for application, as the probability of error can be made
sufficiently small and it runs in lower degree polynomial time2. Following is an
overview of the AKS-algorithm.

1.1 Polynomial Over a Ring

Let (R,+,×, 0, 1), be a commutative ring with identity. The set of polynomials
of one variable over R, R[X], is defined to be the collection of sequences {ai}∞i=0,
where ai ∈ R, and only finite number of them are non-zero. The largest value
of i for a non-zero ai is called the degree of the polynomial.

A polynomial is usually written as

a0 + a1X + a2X
2 + · · ·+ anX

n,

where an 6= 0 and the degree of the polynomial is n. A polynomial of degree
zero is an element of R.

If p and q are two polynomials, their addition and multiplication are defined
in the usual way over the underlying R.

Example 1. Let R = Z6 and p = 4X2 +3 and q = 3X5 +4X2 +5X +4. Then,

p+ q = 3X5+ [(4+4) mod 6]X2+5X+ [(3+4) mod 6] = 3X5+2X2+5X+1.
And,
p× q = 3X5 + 4X4 + 2X3 + 4X2 + 3X .

It is not difficult to prove that (R[X],+,×, 0, 1) is also a commutative ring

with identity.

1.2 AKS Algorithm

We shall present the outline of the basic idea of the Agrawal, Kayal, Saxena-
algorithm for testing prime. We follow [MD] and [VS].

1For all real number s > 1, the zeta function is defined as ζ(s) =
∑

∞

n=1
1
ns . The infinite

series converges as s > 1. The connection of ζ(s) with the set of primes is given by Euler’s iden-

tity, ζ(s) =
∏

prime p

(

1− 1
ps

)

−1
. Right-hand side is actually limk→∞

∏k
i=1

(

1− 1
ps
i

)

−1
,

where pi is the ith prime.
The thing turns out to be more interesting if we take the domain of ζ() as complex number
i.e. s ∈ C. Now the series converges absolutely if Res > 1. In fact one can extend ζ(s) nicely
only by excluding s = 1.
The Riemann Hypothesis is as follows: if s ∈ C, such that s = (x, y), 0 < x < 1, ζ(s) = 0,
then x = 1

2
. So the non-trivial zeros of ζ() should be on the critical line (1/2, y). Note that

there are trivial zeros of ζ() when s is a negative even integer.
2The complexity of the AKS-algorithm using simple implementation of the basic operations

is O((logn)16.5) in terms of bit operations. With more sophisticated implementation of basic
operations it is O((logn)10.5) bit operations. More sophisticated analysis of the algorithm
gives a running time O((logn)7.5). Using some conjecture related to Sophie Germain prime

this is estimated to O((logn)6).

1

1.2.1 Outline of the Algorithm

Following propositions about the polynomial ring Zn[X] characterises the pri-
mality of n.
Proposition 1. If n is prime and a ∈ Zn, then (X + a)n = Xn + a in Zn[X].
Proof: We use binomial theorem to expand (X + a)n.

(X + a)n = Xn +

n−1
∑

r=1

(

n

r

)

arXn−r + an

It is known that, if n is prime then n|
(

n
r

)

, for r = 1, · · · , n− 1. So we have

(X + a)n = Xn + an

in Zn[X]. From the Fermat’s little theorem, we also have an = a if n is a prime.
QED.

Proposition 2. If n is not a prime and p is a prime factor of n, then n does not

divide
(

n
p

)

.

Proof: Let n = pk ×m, where p 6 |m. Consider

(

n

p

)

=
n(n− 1) · · · (n− p+ 1)

p!
.

Clearly n in the numerator is divisible by pk but no other terms in the numera-
tor is divisible by p. The denominator is divisible only by p. So

(

n
p

)

is divisible

by pk−1 and not by pk. So it is not divisible by n. QED.

Proposition 3. If n is not prime and a ∈ Z
∗
n, then (X+a)n 6= Xn+a in Zn[X].

Proof: We have already proved that n does not divide
(

n
p

)

where p is a prime

factor n. Again gcd(a, n) = 1, so gcd(ap, n) = 1. So
(

n
p

)

ap 6≡ 0(mod n) and a

term like
(

n
p

)

apXn−p will not be zero in the expansion of (X + a)n. QED.

We may use this characterization to test prime. We choose a = 1, use fast
exponentiation algorithm to compute (X + 1)n and see whether it is equal to
Xn+1. Unfortunately the method is not efficient as there may be many (O(n))
non-zero terms in the pre-final stage and its time complexity is worst than trial
division which is O(

√
n).

Example 2. Let n = 7 = 1112. We compute in Z7.

(X + 1)7

= (X + 1)1112

= (X + 1)4 × (X + 1)2 × (X + 1)1

= (X4 + 4X3 + 6X2 + 4X + 1)× (X3 + 3X2 + 3X + 1)

= X7 + 1

Now take n = 6 = 1106. The computation is in Z6.

(X + 1)6

= (X + 1)1102

= (X + 1)4 × (X + 1)2

= (X4 + 4X3 + 6X2 + 4X + 1)× (X2 + 2X + 1)

= X6 + 3X4 + 2X3 + 3X2 + 1

The computation cost is heavy. But instead of this equality in Zn[X] one may
compute

(X + a)n ≡ Xn + a (mod Xr − 1),

with a suitable choice of r. In this case we have to compute (X+a)n mod (Xr−
1) and (Xn+a) mod (Xr−1). The second computation gives us Xn mod r+a.

2

Example 3.

Xn + a

Xr − 1
= Xn−r+

Xn−r + a

Xr − 1
= · · · = Xn−r+Xn−2r+· · ·+Xn−qr+

Xn mod r + a

Xr − 1
.

So (Xn+ a) mod (Xr− 1) = Xn mod r + a. If a = 0, then Xn mod (Xr− 1) =
Xn mod r.

In the computation of (X + a)n mod (Xr − 1), all coefficients are modulo
n and Xm ≡ Xm mod r(mod Xr − 1) as Xm + amod ≡ Xm mod r + a (mod
Xr − 1), and a = 0 gives the result. In the computation process the degree of
intermediate polynomials can be kept less than r and the size of the coefficients
less than n.

Example 4. Let n = 7 = 1112 and r = 2. We compute in Z7 and mod (X2−1).

(X + 1)7

≡ (X + 1)1112

≡ [(X + 1)4 × (X + 1)2 × (X + 1)1]

≡ [(X + 1)× 2(X + 1)× (X + 1)]

≡ X + 1

≡ (X7 + 1) mod (X2 − 1).

Now take n = 6 = 1106. The computation is in Z6 and mod (X2 − 1).

(X + 1)6

≡ (X + 1)1102

≡ [(X + 1)4 × (X + 1)2]

≡ [(X + 1)× 2(X + 1)]

≡ 4(X + 1)

6≡ 2 ≡ (X6 + 1) mod (X2 − 1)

If r is within O((log n)c), the computation time is bounded by some poly-
nomial of the length of input. If n is a prime number and a < n, then
(X + a)n ≡ Xn mod r + a (mod Xr − 1), for all a and r.

It will be nice to get a single suitable r, not too large in size, as a witness of
n as a prime. The theory of AKS-algorithm establishes the sufficiency condition
for a suitable r that can be tested in polynomial time. They proved that there is
such an r < n’s. In fact there is an r ≤ 4⌈logn⌉2. As the value r is polynomial
in the size of input, it may be found in polynomial time by exhaustive search.

But even with a suitable r it is necessary to check for the equivalence of
(X + a)n and Xn + a modulo Xr − 1 in Zn for a sequence of a’s. They proved
that the number of a’s are polynomial bounded. But even then the conclusion
of the main theorem about n is not a prime, but some power of a prime. But in
algorithm, testing a perfect power can be done in polynomial time, so a prime
can be tested in polynomial time.

While searching for r, if it is found that r|n, then n is composite with r as
a factor. Similarly, while going through the sequence of a’s if it is found that
(X+a)n 6≡ Xn mod r+a (mod (Xr−1, n)), then also n is composite with (r, a)
as a witness. The main theorem of the AKS-algorithm is as follows.
Theorem 4. (Main Theorem) Let n and r be integers such that

1. n ≥ 3,

2. r < n is a prime,

3. a 6 |n, for 2 ≤ a ≤ r,

4. order of n in Z
∗
r > 4(logn)2,

5. (X + a)n ≡ Xn + a(mod Xr − 1) in Zn[X], for 1 ≤ a ≤ 2
√
r logn,

then n is a power of a prime.
Following is the AKS-algorithm.

3

isPrimeAKS(n) // n ≥ 2
1 if n = ab, where a, b ≥ 2, then return 0
2 r ← 2
3 while r < n do

4 if r|n return 0
5 if isPrime(r) then
6 if ni mod r 6= 1, ∀i, 1 ≤ i ≤ 4⌈logn⌉2 then break

7 r← r + 1
8 if r = n then return 1
9 for a← 1 to 2⌈√r⌉⌈logn⌉ do
10 if (X + a)n mod (Xr − 1, n) 6= Xn mod r + a then return 0
11 return 1

We assume the correctness of the main theorem and argue that the time
complexity of the algorithm is bounded by a polynomial of logn, the input
length. We shall not go for any sophisticated analysis.

1.2.2 Analysis of the Algorithm

We assume that the number is represented in binary. For an input n, the
largest number generated during computation will not exceed n2. The size
of all intermediate data are bounded by length 2 logn. So the number of bit
operations for all basic arithmetic operations on this data is quadratic of input
length, O((log n)2).

1. The number of arithmetic operations to test perfect power isO((log n)2 log logn).
The algorithm to test a perfect power and its analysis is given afterward.

2. We claim (without any proof at this point) that the loop of line 3-7 will be
executed for O((log n)5) times. We take the number of iteration as l(n).
The value of r is incremented in each iteration of the loop and is bounded
by l(n) + 2.

3. The number of divisions in line-4 is also l(n).

4. In line-5 we test whether r is prime. The value of r is bounded by l(n).
Even if we use trial division, it takes O(

√
r) trials for each r. So the total

number of trials will be O(l(n)3/2) . If l(n) = O((log n)5), the number of
iterations is a polynomial of input length3.

5. If r is a prime, then in line-6 we test whether the order of n in Z
∗
r is

greater than 4⌈logn⌉2. If the order of n is ≤ 4⌈logn⌉2, we go for the next
r. Otherwise we break.

For each r, we calculate ni mod r, for i = 1, · · · 4⌈logn⌉2. Given an
r, the number of multiplications modulo r are O((log n)2) (n0 = n mod
r, n1 = (n0 × n) mod r, (n1 × n) mod r, · · · , nk = (nk−1 × n) mod r),
where k = 4⌈logn⌉2). Considering all iterations (r’s), the total number of
multiplications are O(l(n)(log n)2).

6. If the loop in line 3-7 terminates at line 3 (for small values of n), then
line-8 returns 1, indicating n as prime. But when the loop terminates by
break, the loop of line 9-10 will be executed with the corresponding value
of r.

7. Computation of
√
r takes O(r) time.

For each a, 1 ≤ a ≤ 2⌈√r⌉⌈logn⌉, the calculation of (X+a)n mod (Xr−
1, n) takes place and is compared with Xn mod r + a.

(X+a)n takes O(log n) number of polynomial multiplications over the ring
Zn[X]/(Xr−1). Computation ofmodulo Xr−1 is a simple, it replacesXs

by Xs−r, whenever r ≤ s < 2r−1. So the degree of a polynomial is always
smaller than r. Each polynomial multiplication and addition over the ring

3A better method is to prepare a prime table incrementally. The table contains the primes
from 2 to 2i, when 2i−1 < r ≤ 2i. A variation of the Sieve of Eratosthenes is used for the
purpose. When the value of r exceeds 2i, the table is augment with primes up to 2i+1. The
total table building cost can be shown to be equal to O(l(n) log l(n)).

4

Zn[X]/(Xr− 1) takes O(r2) multiplication and addition operations of the
coefficients in Zn. So the overall cost of O(log n) polynomial multiplication
is O((log n)r2). Taking all a’s together we have the following bounds of
the number of arithmetic operations. We take the size of r as l(n).

O(
√

l(n)(logn)× l(n)2 logn) = O(l(n)5/2(logn)2.

Clearly the computation cost of loop in line 9-10 dominates. If we take l(n) =
O((log n)5) which we shall prove, the number of arithmetic operations are
O((log n)14.5) and the number of bit operations are O((log n)16.5), as numbers
are bounded by n2.
A sophisticated implementation of the operations and their analysis will give
the corresponding figures as O∼((logn)9.5) and O∼((logn)10.5).

1.2.3 Small Witness r

AKS proved that the loop of line 3-7 of their prime testing algorithm will
terminate within 20⌈logn⌉5 steps. For small n where n < 20⌈logn⌉5 e.g.
228 < 20(⌈log 228⌉)5 but 229 < 20(⌈log 229⌉)5, it may terminate when r = n
at line-3.
For a large n there are two possibilities of termination - either r is a divisor of
n (line-4) or there is a prime number r (r < 20⌈logn⌉5) such that the order of
n in Z

∗
r is greater than 4⌈logn⌉2. Following is the proposition.

Proposition 5. (A) For n ≥ 2 there is a prime number r, 2 ≤ r ≤ 20⌈logn⌉5
so that, either r|n, or if r 6 |n, then the order of n in Z

∗
r (smallest i for which

ni ≡ 1(mod r)) is larger than 4⌈logn⌉2.
We shall use the following proposition without proof.

Lemma 6. (B) If n ≥ 2,
∏

p is a prime ≤2n

p > 2n.

Proof: (A) If n is “small” i.e if n < 20⌈logn⌉5, then n has a prime divisor
< 20⌈logn⌉5.

For larger n we shall argue that there is a prime r in the range of 2 ≤ r ≤
20⌈logn⌉5, such that ni 6≡ 1(mod r), for all i, 1 ≤ i ≤ 4⌈logn⌉2.
We define

P =
∏

1≤i≤4⌈log n⌉2

(ni − 1).

We have

P <
∏

1≤i≤4⌈log n⌉2

ni

= n1+2+···+4⌈log n⌉2

= n
1

2
4⌈log n⌉2(4⌈log n⌉2+1)

= n8⌈log n⌉4+2⌈logn⌉2

< 210⌈log n⌉5 , for n ≥ 4.

4 Using the proposition (B) we get

∏

p is a prime ≤20⌈logn⌉5

p > 210⌈log n⌉5 > P.

The product of all the primes ≤ 20⌈logn⌉5 exceeds P , so there is a prime r that
does not divide P - if all of them divides P , then their product also divides P .

As r does not divide P =
∏

1≤i≤4⌈log n⌉2(n
i − 1), it does not divide ni − 1,

for any i = 1, · · · , 4⌈logn⌉2.
If r|n, then n is composite; otherwise ni 6≡ 1(mod r), for any i = 1, · · · , 4⌈logn⌉2
QED.

4If n8(log n)4+2(log n)2 < 210(log n)5 , then (8(log n)4 + 2(log n)2) logn < 10(log n)5 i.e.
8(log n)5+2(log n)3 < 10(log n)5. If n = 4, the left-hand side of the inequality is 8·25+2·23 =
256 + 16 = 272 and the right-hand side is 10 · 32 = 320.

5

1.2.4 Correctness Proof

If the main theorem is correct, we have the correctness proof of the algorithm.
Theorem 7. If isPrimeAKS(n) runs on n ≥ 2, then it returns 1 if and only if n
is a prime.
Proof: n is a prime number (⇐):

• n is not a perfect power, the test of line 1 fails.

• When within the loop of line 3-7, r < n and n is a prime, so r 6 |n, and
the test in line 4 fails.

• If the loop of line 3-7 terminates at line 3 (for small n), then r = n is
prime and 1 is returned in line 8.

• If the loop terminates at break, the order of n in Z
∗
r is greater than

4(logn)2. And the order of n in Z
∗
r must be less than r. So r > 4(logn)2

i.e.
√
r > 2(logn). Therefore n > r > 2

√
r logn.

• As n is prime, the inequality of line 9-10 does not holds for any a, 1 ≤
a ≤ 2⌈√r⌉⌈logn⌉. So 1 is returned in line-11.

The algorithm returns 1: This can happen in line 8 and line 11.

• Line 8 returns 1, only if the exit from the loop is from line 3 i.e. r = n
and no integer in the range 2 to n− 1 divides n. So n is prime.

• Line 11 returns 1, only if the loop of line 3-7 is terminated by a break.
We claim that n and r satisfies all the conditions of the main theorem. So
n should be power of a prime, but perfect power is excluded in line 1. So
n is a prime.

1. The initial value of r was 2 and at break r < n. So n ≥ 3.

2. It is tested whether r < n is a prime at line 5.

3. The value of a in the loop of line 9-10 are in the range of 1, · · · , 2√r logn <
r i.e. the values of a are the values of r in earlier iterations of the loop
of line 3-7. None of these values divide n, otherwise the loop would have
been terminated at line 4.

4. The order of n in Z
∗
r > 4(logn)2 is tested in line 6 as the condition for

break.

5. The condition (X + a)n ≡ Xn + a(mod Xr − 1) in Zn[X], for 1 ≤ a ≤
2
√
r logn is also tested in the loop of line 9-10.

QED.

1.3 Perfect Power Test

Following algorithm can be used for perfect power test. We want to see whether
the input n = ab, where a, b ≥ 2.

isperfectPower(n) // n ≥ 2
1 b← 2
2 while 2b ≤ n do

3 l← 1, h← n
4 while h− l ≥ 2 do

5 mid← l+h
2

6 temp← min{midb, n+ 1}
7 if n = temp then return (mid, b)
8 if temp < n then l ← mid
9 else h← mid
10 b← b+ 1
11 return (−1,−1).

It is not necessary to calculate midb beyond n + 1 in line-6. The outer
loop is executed O(log n) times. The inner loop is executed O(log n) times.
The exponentiation takes O(log b) = O(log logn) operations. So the number of
operations are O((log n)2 log log n).

6

References

[AB] Computational Number Theory by Abhijit Das, (will be published from
CRC Press).

[AKS1] PRIMES is in P, by M Agrawal, N Kayal, and Saxena N, preprint,
http://www.cse.iitk.ac.in/news/primality.ps August, 8, 2002.

[AKS2] PRIMES is in P, by M Agrawal, N Kayal, and Saxena N, preprint
(revised), http://www.cse.iitk.ac.in/news/primality_v3.psMarch, 1,
2003.

[DGB] Proving Primality after Agrawal, Kayal and Saxena, by D G Bernstein,
preprint http://cr.yp.to/papers#aks, January 25, 2003.

[MD] Primality Testing in Polynomial Time From Randomized Algorithms to

“PRIMES is in P” by Martin Dietzfelbinger, LNCS 3000, Pub. Springer, 2004,
ISBN 3-540-40344-2.

[RCCP] Prime Numbers A Computational Perspective by Richar Crandall & Carl

Pomerance, 2nd ed., Pub. Springer, 2010, 978-1-4419-2050-8.

[VS] A Computational Introduction to Number Theory and Algebra by Victor

Shoup, 2nd ed., Pub. Cambridge University Press, 2009, ISBN 978-0-521-
51644-0.

7

