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1 Test for prime I

Testing whether a natural number is prime is an old problem. Even today
a deterministic testing takes a long time for an integer of large size ([LKP]).
The first deterministic polynomial time algorithm for testing prime (AKS cy-
clotomic primality test) was proposed by Manindra Agrawal, Neeraj Kayal, and
Nitin Saxena of IIT Kanpur in 2004.

1.1 Trial Division

We start with the old and well known simple algorithm of trial division.

isprimeTD(n)
i ← 2
sqrtN ← ⌊√n⌋
while i ≤ sqrtN

if n mod i = 0 return 0
i ← i + 1

return 1

n is prime if the function returns 1. Let the length of the input be ⌈log2 n⌉ =
b bits. The number of iterations is O(

√
n) = O(2

b

2 ) = 2O(b). So the time
complexity is exponential.

To get an idea about the problem, let us take n to be a 100 digit decimal
number. The number of iterations in the worst case (when n is a prime) is

√
n =

1050. If there are 109 iterations per second, the worst case time requirement is
1050−9/(3.154 × 107) ≈ 1033 years. So the algorithm, though deterministic, is
not suitable for testing a large prime number1.

A modified trial division algorithm not only tests for primality, but also gives
the prime decomposition or factoring. We may slightly improve the factoring
algorithm by trial division. We divide n by 2 as many times as possible, so that
n = 2kn2, where k is odd. Then n2 will be divided with odd integers. But still
in the worst case it is O(

√
n). After trying to divide with 3, if the quotient is

n3 > 1, the subsequent trials of division will be with integers that are congruent
to 1 or 5 (mod 6). And this process will continue, until the quotient is 1.

One should look for characterisation of prime numbers that can be trans-
formed into an efficient algorithm. A well known characterisation is the Wilson’s
theorem.
Theorem 1. (Wilson) p is a prime number if and only if (p−1)! ≡ −1 (mod p).

This characterisation can be transformed to an efficient prime-testing algo-
rithm if there is a fast computation method of (n − 1)! mod n. Unfortunately
no efficient procedure is known.

Another characterisation comes from a different area. The 10th problem of
the list of Hilbert problems2 was as follows:
Is there any algorithm that, given a polynomial with integer coefficients, decides
whether that polynomial has a root in integers?
This was proved to be undecidable by Yuri Matijasevic̆ in 1970. There he
demonstrated how to construct a polynomial of integer coefficients, of degree 10
with 26 variables, such that whenever integers are substituted for the variables,

1Large compared to what one come across every day. No given natural number can be
called “large”, as there are infinitely many larger integers!

2Twenty-three mathematical problems were published by David Hilbert, a well known
German mathematician, in 1900. According to Hilbert these are the problems that will
keep the 20th century mathematicians busy. Many of these problems actually influenced the
20th century mathematics. A subset of theses problems (10 problems) were presented at the
International Congress of Mathematicians in Paris.
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the value of the polynomial is a prime number. And every prime number is a
value of the polynomial.

But it is unknown, how to test efficiently whether a given positive integer is
a value of the polynomial.

Now we consider an algorithm of very different flavor. It uses randomization.
It has an oracle that can supply a “random number”. In practical implementa-
tion we shall use “pseudo random numbers”.

1.2 Lehmann’s Randomized Algorithm

Following randomized algorithm for testing prime is based on Euler’s criterion.

isprimeLR(n, t)
for i ← 1 to t do

a ← rand{1, 2, · · ·n− 1}
r ← a

n−1

2 mod n
if r 6∈ {1,−1} return 0
else b[i] ← r

if ∃i, b[i] = −1 then return 1
else return 0

The algorithm in its ith iteration chooses an integer ai, uniformly at random,
from the range {1, 2, · · · , n− 1}.
It evaluates a

n−1

2

i (mod n) = ri (say). If the value of ri is anything other than
1 or n− 1, the algorithm returns 0 indicating n as a composite number.

If the ri = 1 or n − 1, it is stored in the ith element of the array b[]. The
number of iterations t is also an input to the algorithm. If the outcome of all
iterations are 1 or n− 1, the computation comes to the next phase.

If all elements of the array are 1, the algorithm returns 0 i.e. reports n as a
composite number. Otherwise, if there is at least one n − 1, then it returns 1
and reports n as a prime number.

The algorithm is a finite sequence of random experiments. So the result is a
random variable. We wish to know the probability of getting a “wrong” output.
The output may be wrong in two ways. When n is prime and the algorithm
reports it to be composite number, and when n is a composite number, the
algorithm reports it as a prime.

When n is a prime number: half of the elements of {1, 2, · · · , n − 1} = Z
∗
n

should give the value of a
n−1

2 mod n as 1, and the other the other half should
give the value as n− 1 (Euler criterion).

So the loop will run for t iterations. And the probability of getting all t

values of a
n−1

2 as 1 i.e. r1 = r2 = · · · = rt = 1 is 1
2t . So the probability of

wrongly reporting n to be composite is also 1
2t .

When n is a composite: There are two possibilities. There may not be any

a ∈ {1, 2, · · · , n − 1} so that a
n−1

2 mod n = n − 1. Then either a value of

a
n−1

2 mod n = d, where 1 < d < n − 1, and the loop terminates without going
through t iterations; or the loop is running for t iterations with all values of

a
n−1

2 mod n = 1. In both situations the algorithm correctly reports n to be
composite.

The other possibility is that it will be reported as a prime after t iterations

i.e. there is an a ∈ {1, 2, · · · , n− 1} such that a
n−1

2 mod n = n− 1. In that case
there is a theorem which claims that for more than half of a ∈ {1, 2, · · · , n− 1},
a

n−1

2 mod n is neither 1 nor n− 1.
In this case the probability of the loop running for t iterations is not more

than 2−t. So, the probability that n will be reported as a prime (wrongly), at
the end of t iterations, cannot be more than 2−t.

In both the cases, the probability of wrong output is bounded by 2−t. This
can be made low by increasing the number of iterations.

The main cost is the computation of a
n−1

2 mod n. The size of any interme-
diate data is bounded by n2 (two elements of {1, 2, · · · , n− 1} are multiplied).
The exponentiation can be done by repeated squaring that requires O(log2 n)
iterations.

Following is the algorithm for computing of ae mod n where a ∈ Zn and e is
a positive integer. Let the binary representation of e = (ek−1ek−2 · · · e1e0).
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modExpN(a, e, n)
exp ← 1
s ← a mod n
while e ≥ 1

if (e mod 2) = 1 then exp ← (exp × s) mod n
s ← s2 mod n
e ← e ÷ 2

return exp

k = ⌈log2 e⌉, so the loop is executed k times with k squaring and ≤ k
multiplications over Zn. So the running time is O(log e(logn)2). If 1 < e < n,
then it is O(log n)3).

1.3 Fermat Test

Fermat’s little theorem states that: if p is a prime and p 6 |a, then ap−1 ≡
1 (mod p).
In other words, if gcd(a, p) = 1, and ap−1 6≡ 1 (mod p), then p is composite.
We may choose a from Zn.
Definition 1: An integer a, 1 ≤ a < n, is called a Fermat-witness or F-witness
for n as a composite number, if an−1 mod n 6= 1.

Example 1. 21246 mod 1247 = 173, so 2 is an F-witness for 1247 (as composite).

On the other hand 2340 mod 341 = 1, but 341 = 11× 31, is a composite. So 2 is
not an F-witness for 341. But 3340 mod 341 = 56, so 3 is an F-witness for 341.
Definition 2: An integer a ∈ (1, n), is called a Fermat-liar or F-liar for an odd
composite number n, if an−1 mod n = 1.

2 is a F-liar for 341. The converse of Fermat’s little theorem is not true
in general. But it is almost true as the number of F-liar are small for most
composite numbers.
Proposition 2. Let n be an integer and n ≥ 2.

1. If 1 ≤ a < n is such that ar ≡ 1 (mod n) for some integer r ≥ 1, then
a ∈ Z

∗
n.

2. If an−1 ≡ 1 (mod n) for all a, 1 ≤ a < n, then n is a prime number.

3. If n is an odd composite number, then every element of Zn \ (Z∗
n ∪ {0}) is

an F-witness.

Proof:

1. If r = 1, then a ≡ 1 (mod n), implies that n|a − 1. But a < n, so
a = 1 ∈ Z

∗
n.

Otherwise, a · ar−1 ≡ 1 (mod n). Let us call ar−1 = b. So b is the
multiplicative inverse of a and both of them are in Z

∗
n. Note that ax ≡

1(mod n) has a solution implies that gcd(a, n) = 1 i.e. a ∈ Z
∗
n.

In other words, a·ar−1+nk = 1. So by the Bezout’s identity, gcd(a, n) = 1
and a ∈ Z

∗
n.

2. We have 1n−1 ≡ 2n−1 ≡ · · · ≡ (n− 1)n−1 ≡ 1 (mod n).
From the first part of the proposition we have 1, 2, · · · , n− 1 are elements
of Z∗

n. This is equivalent to say that n is a prime.

3. If a ∈ Zn \ Z∗
n, then gcd(a, n) = d > 1. If an−1 ≡ 1 (mod n), then

a · an−2 + kn = 1, which is impossible as d > 1 and d is the smallest
positive integer that can be expressed as linear combination (diophantine)
of a and n. So an−1 6≡ 1 (mod n) and is an F-witness.

QED.

An F-witnesses from Zn\(Z∗
n∪{0}) may be used to prove that n is composite.

But the number elements in Zn \ (Z∗
n ∪ {0}) is n− 1− φ(n) is small3 compared

to {1, · · · , n− 1}. So the probability of selecting them at random is low.

3Consider n = pq, where p, q are almost equal size primes. The size of Zn \Z
∗

n
is n− 1−

φ(n) = (pq − 1)− (p − 1)(q − 1) = p+ q − 2.
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Example 2. We consider 35 = 5× 7, an odd composite number with two prime
factors. There are 35−1−φ(35) = 34−(5−1)(7−1) = 11 elements in Z35\Z∗

35.
Out of which 11− 1 = 10 (excluding 0) are F-witnesses.

But in most of cases, there are elements of Z∗
n that are also F-witnesses.

Example 3. Consider the previous example of 5× 7 = 35

Z35 \ (Z∗
35 ∪ {0}) F-witness in Z

∗
35 F-liar in Z

∗
35

5, 7, 10, 14, 15, 20, 21, 25,
28, 30

2, 3, 4, 8, 9, 11, 12, 13, 16,
17, 18, 19, 22, 23, 24, 26,
27, 31, 32, 33,

1, 6, 29, 34

So it seems that for an odd n an a chosen uniformly at random from {2, · · · , n−
2} will have larger than 1

2 probability of being an F-witness.
1 and n − 1 are always F-liars for an odd n as n − 1 ≡ −1 (mod n) and
(−1)n−1 = 1. So we choose a uniformly at random from {2, 3, · · · , n − 2}. In
this example the the probability of getting an F-liar is 2

32 = 1
16 . This is a good

news.
The first approximation of primality test based on the above fact is known

as Fermat test. It depends on F-witnesses.

isprimeFT1(n) // n is odd ≥ 3
a← rand{2, · · ·n− 2}
if (an−1 mod n) 6= 1 return 0 // composite
else return 1 // prime

Proposition 3. Let n ≥ 3 be an odd composite number. If there is an F-witness
a ∈ Z

∗
n, then isprimeFT1() returns 0, a proof of composite number, with a

probability more than 1
2 .

Proof: We define the set of F-liars for odd composite n as

LF
n = {a ∈ Zn : an−1 ≡ 1 (mod n)}

It is clear from the proposition (1.3.1) that LF
n ⊆ Z

∗
n. We prove that it is a

subgroup of Z∗
n. It is enough to show that LF

n is closed under ×n as Z∗
n is finite.

Closure: if a, b ∈ LF
n , then an−1 ≡ 1 (mod n) and bn−1 ≡ 1 (mod n), so

(ab)n−1 = an−1 · bn−1 ≡ 1 (mod n). So ab ∈ LF
n .

If there is one F-witness in Z
∗
n, the set of F-liar, LF

n , cannot be equal to Z
∗
n

and is a proper subgroup of Z∗
n. By Lagrange’s theorem the order of LF

n divides
the order of Z∗

n = φ(n) < n − 1, as n is a composite number. So the size or
order of LF

n , |LF
n | < n−1

2 .
Thus the probability that a is chosen uniformly at random from {2, · · · , n−2}

will be an F-liar is at most

|LF
n \ {1, n− 1}|

|Zn \ {0, 1, n− 1}| <
n−1
2 − 2

n− 3
=

n− 5

2(n− 3)
<

1

2
.

QED.

Under the given assumption (that there is at least one F-witness in Z
∗
n), the

probability of getting F-liars after k trails or random experiment of primality
test is less than 2−k. Following is the k-iteration Fermat test.

isprimeFT2(n, k) // n is odd ≥ 3 k ≥ 1
for i ← 1 to k

a ← rand{2, · · ·n− 2}
if an−1mod n 6= 1 return 0 // composite

else return 1 // prime

The algorithm returns 0 (n is composite) if it has found an F-witness. If n
is a prime, no such witness is possible to get so the algorithm returns 1.
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1.3.1 Carmichael Numbers

But the story does not end here. What if there is some odd composite n so that
there is no F-witness in Z

∗
n. Interestingly there are such species, and in fact

there are infinitely many of them (proved in 1994).
Definition 3: An odd composite number n is called a Carmichael number if for
all a ∈ Z

∗
n, a

n−1 ≡ 1 (mod n) i.e. all elements of Z∗
n are F-liars.

In other words, an odd composite number n is called a Carmichael number
if an ≡ a (mod n), for all integer a.

The smallest Carmichael number is 561 = 3 · 11 · 17. All elements of Z∗
561

(φ(561) = 561 · 23 · 1011 · 1617 = 320) are F-liars and the probability of getting wrong
answer is 320−2

561−3 = 0.5699 > 0.5.
In general, if a Carmichael number is passed through the Fermat Test, the

probability that it will be wrongly identified as a prime is

|Z∗
n \ {1, n− 1}|

|{2, 3, · · · , n− 2}| =
φ(n)− 2

n− 3
>

φ(n)

n
=

∏

prime p
p|n

(

1− 1

p

)

.

This bound may be close to 1 for Carmichael numbers with large prime
factors. As an example for a Carmichael number 651693055693681 = 72931×
87517× 102103, the probability is greater than 0.999965.

Let C(x) be the number of Carmichael numbers below x. It was proved that

C(x) > x
2
7 . The bound was improved in 2005 to x0.332. Following table is from

Wikipedia showing the initial distribution.

n 3 4 5 6 7 · · · 20 · · ·
C(10n) 1 7 16 43 105 · · · 8220777 · · ·

So the conclusion is that we have to go beyond Fermat test if we want to
test primality with reliability. Following are a few properties of Carmichael
numbers.
Proposition 4. A Carmichael number cannot be of the form pk, where p is an
odd prime and k > 1.
Proof: Our basic strategy is to find an appropriate element of Z∗

pk that is an
F -witness.
Let n = pk be a Carmichael number, where p is an odd prime. We choose
a = p+ 1. The gcd(a, p) = 1 implies that gcd(n, a) = 1. So a ∈ Z

∗
n.

We assume that a is an F-liar, so an−1 ≡ 1 (mod n), and that implies an−1 ≡
1 (mod p2) i.e.

an−1 ≡ (1+p)n−1 ≡ 1+(n−1)p+
∑

2≤i≤n−1

(

n− 1

i

)

pi ≡ 1+(n−1)p (mod p2).

So (n−1)p ≡ an−1−1 ≡ 0 ( mod p2) i.e. p|(n−1), but it is impossible as n = pk.
So a is an F-witness of n in Z

∗
n. Hence n cannot be a Carmichael number. QED.

Proposition 5. If n is a Carmichael number then n is a product of at least three
distinct primes, and none of them have power more than 1.
Proof: We have already proved that n cannot be of the form pk, where p is an
odd prime and k > 1.
There are two other cases to consider:

1. n = pk ×m, where m > 1, p is a prime, k ≥ 2, and gcd(p,m) = 1.

2. n = p× q, where p and q are primes.

We shall show that in each of these cases there is an F-witness in Z
∗
n.

Case 1: n = pk ×m: clearly p2 and m are relatively prime. According to the
Chinese remainder theorem we can get an a such that 1 ≤ a < p2 ×m ≤ n and
satisfies the congruence

a ≡ p+ 1 (mod p2), and,

a ≡ 1 (mod m).
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Clearly gcd(a, pk) = 1 as p2|a− (p+ 1) implies p|a− (p+ 1) implies p|a− 1, so
p 6 |a. Also gcd(a,m) = 1.
So the gcd(a, n) = 1 i.e. a ∈ Z

∗
n.

Our next claim is that a is an F-witness. If it is not the case, we have an−1 ≡
1 (mod n) implies an−1 ≡ 1 (mod p2) as p2|n.
Again,

1 ≡ an−1 ≡ (1+p)n−1 ≡ 1+(n−1)p+
∑

2≤i≤n−1

(

n− 1

i

)

pi ≡ 1+(n−1)p ( mod p2).

So we have (n− 1)p = (pk ·m− 1)p ≡ 0 (mod p2) i.e. pk ·m− 1 ≡ 0 (mod p).
But that is impossible. So a is an F-witness of n.
Case 2: n = p× q. Without any loss of generality we assume that p > q.

It is known that Z∗
p is a cyclic group and it has a generator say g < p. Again

using the Chinese remainder theorem there is an element a, 1 ≤ a < n satisfying

a ≡ g (mod p),

a ≡ 1 (mod q).

It is clear that gcd(a, p) = gcd(a, g) = 1 and gcd(a, q) = 1. So a ∈ Z
∗
n.

We claim that a is an F-witness. Otherwise (if a is an F-liar), an−1 ≡ 1 (mod
n), implies that an−1 ≡ 1 (mod p). But then a ≡ g(mod p), so gn−1 ≡ 1 (mod
p).

As g is the generator of Z∗
p, p − 1 is the order of g, so (p − 1)|(n − 1) i.e.

(p− 1)|(pq− 1), implies (p− 1)|[q(p− 1)+ q− 1], implies (p− 1)|(q− 1), implies
p ≤ q - a contradiction. QED.

1.3.2 Square Roots of 1

Definition 4: Let n be a positive integer and a is an integer such that 1 ≤ a < n.
a is called square root of 1 modulo n if a2 ≡ 1 (mod n).

For every n we have 12 = 1 and (n − 1)2 ≡ (−1)2 = 1 (mod n). These are
known as trivial square roots of 1 modulo n.
We have already proved that x2 ≡ 1(mod pe), where p is an odd prime and
e is a positive integer has only these two solutions, x = 1 or x = pe − 1 ≡
−1 (mod pe).
We also have seen that for an odd positive integer n whose prime factorisation
is

n = pe11 · · · · · pekk ,

where k ≥ 2, has 2k solutions of a2 ≡ 1 (mod n). The solutions are pre-images
of ({1, pe11 − 1}, · · · , {1, pekk − 1}) in the Chinese Remainder map

f : Z∗
n → Z

∗
p
e1
1

× · · · × Z
∗
p
e
k

k

.

So for an odd composite integer n there are non-trivial square-roots of 1.

Example 4. If n = 977 a prime, it has only two square-roots of 1 modulo 977.
They are 1, 976.
If n = 125, then also 1 and 124 are the only two square-roots of 1 modulo 125.
But if n = 7875 = 32× 53× 7, there are 8 square-roots of 1 modulo 7875. These
are f−1(1, 1, 1) = 1, f−1(8, 1, 6) = 251, f−1(1, 124, 6) = 874, f−1(1, 1, 6) =
1126, f−1(8, 124, 1) = 6749, f−1(8, 1, 1) = 7001, f−1(1, 124, 1) = 7624 and
f−1(8, 124, 6) = 7874.

It is not difficult (computationally) to detect a perfect power. Let n be an
odd positive integer which is not a perfect power. If it has non-trivial square
root of 1 modulo n, then it is a composite number. But this property alone
cannot be used in a randomized algorithm unless n has many prime factors.

We introduce this test for non-trivial square root of 1 in the process of
Fermat test. In Fermat’s test we compute an−1 mod n, where n is an odd
positive integer. So n− 1 is even, and can be written as, n− 1 = u · 2k, where
u is an odd integer. We can write

an−1 ≡ (au mod n)2
k

(mod n).
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So we have k + 1 steps of computation where,

bi =

{

au mod n if i = 0,
(bi−1)

2 mod n if i = 1, 2, · · · , k.

Example 5. Let n = 3601 = 13 · 277, we have n− 1 = 3600 = 24 · 225. We have
the following table for a few values of a, 2 ≤ a ≤ 3599.

a b0 = a225 mod n b1 = b20 mod n b2 = b21 mod n b3 = b22 mod n b4 = b23 mod n
9 2380 27 729 2094 2419
13 2015 1898 1404 1469 962
35 2276 1938 1 1 1
60 60 3600 1 1 1
278 278 1663 1 1 1
555 1 1 1 1 1

It is clear that 9 and 13 ∈ Z3601 \ Z∗
3601 are F-witnesses showing 3601 as com-

posite. Both 35, 60, 278 and 555 are F-liars. But in the rows of 35 and 278 we
observe that 1938 and 1663 are non-trivial square roots of 1 modulo 3601. So
both of them indicate that 3601 is a composite number. No such conclusion can
be drawn from other two. The conclusion drawn from the row of 35 and the
row of 278 are beyond the Fermat test.

The prime factorisation of 3601 = 13×277. So there are 2×2 = 4 square roots
of 1. They are (1, 1) 7→ 1, (1, 276) 7→ 1938, (12, 1) 7→ 1663 and (12, 276) 7→ 3600.
Out of these four 1663 and 1938 are non-trivial.

For a given a the sequence of b0, b1, · · · , bk may have four possible forms.

1. b0 = 1: The complete sequence will have 1’s. The value of a may be an
F-liar, and it does not show any nontrivial square root of 1. No definite
conclusion can be drawn about n.

2. b0 6= 1 but bi = n− 1 for some i < k: The sequence bi+1, · · · , bk is of 1’s.
Again a may be an F-liar, and there is no nontrivial square root of 1 in
the sequence. No definite conclusion can be drawn about n.

3. b0, · · · , bk ∈ {2, · · · , n−2} - a is an F -witness and n is certainly composite.

4. b0 6= 1 and none of b0, b1, · · · , bk−1 are n − 1, but bk = 1: So there is a
smallest i, 1 ≤ i ≤ k so that bi = 1. This implies that b2i−1 ≡ 1 (mod n),
i.e. bi−1 is a non-trivial square root of 1. So n is composite.

Last two cases detect composite. We can summaries these two cases as
follows.
If au mod n 6= 1 and au·2

i

mod n 6= n − 1 for i = 0, 1, · · · , k − 1, then n is a
composite number. This decision actually does not depend on whether bk is 1
or not.
Definition 5: Let n ≥ 3 be an odd integer so that n− 1 = u · 2k, where u is an
odd integer and k ≥ 1. An integer a, 1 ≤ a < n, is called an Artjuhov-witness
or A-witness of n to be composite, if au 6≡ 1 (mod n) and au·2

i 6≡ −1 (mod n)
for all i, 0 ≤ i < k. If n is composite and a is not an A-witness for n, then a is
called an A-liar.

We define the set of A-liars for an odd composite n where n− 1 = u× 2k.

LA
n = {a ∈ Zn : b0 = au mod n = 1 or bi mod n = n− 1, 0 ≤ i < k}.

It is important to note that an integer a, 1 ≤ a < n, satisfying the cases 1 or
2 or 4 is an element of LF

n . Whereas an a satisfying cases 1 or 2 is an element
of LA

n . So LA
n ⊆ LF

n . So for a given odd integer n, the set of A-witness may be
a larger set.
Proposition 6. If a is an A-witness for n, then n is composite.

The strengthening of Fermat test using A-witness is called Miller-Rabin
test4. Following is the randomised Miller-Rabin algorithm.

4M. Artjuhov [AM] suggested the sequence of computation of bi. Afterward G. M. Miller
[MGM] used this criteria and proposed a deterministic polynomial time algorithm under the
assumption that the Extended Riemann Hypothesis (ERH) is true. He proved that the small-
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isprimeRM(n) // n is odd ≥ 3
1 Find u, k so that n− 1 = u · 2k
2 a ← rand{2, · · ·n− 2}
3 b ← au mod n
4 if b ∈ {1, n− 1} return 1
5 for i ← 1 to k−1
6 b ← b2 mod n
7 if b = n − 1 return 1

8 if b = 1 return 0 // certainly composite
9 return 0 // certainly composite

Extraction of u and k, where n = u · 2k takes at most logn division by 2.
This is equivalent to right-shift operations and takes O((log n)2) bit operations.
Computation of au mod n takes O((log n)3) bit operations. The loop is executed
k − 1 times which is O(log n). Multiplication modulo n is the most costly
operation per iteration. It takesO((log n)2) bit operations. So there areO(log n)
arithmetic operations and O((log n)3) bit operations.
Lemma 7. If the Miller-Rabin test returns 0, then n is composite.
Proof: Let a be chosen in the algorithm and the output is 0. We claim that a
is an A-witness and n is a composite number.

Value 0 may be returned in two different ways:
Case I: We get 0 due to return from line 8 in the ith iteration i.e. bi = 1. It

is clear that b0, b1, · · · , bi−1 6∈ {1, n− 1}. So bi−1 must be a non-trivial square
root of 1. So n is composite and a is an A-witness.

Case II: We get a 0 due to return from line 9 at the end of k − 1 iterations.
So b0, b1, · · · , bk−1 6∈ {1, n− 1}. So by the definition a is an A-witness that n is
a composite. QED.

It remains to show that the algorithm isprimeMR() gives an erroneous out-
put 1 for an odd composite n with a bounded probability, so that we can iterate
it to any desired low value.

We wish to demonstrate that the size of A-liars is less than half of the size
of {2, 3, · · · , n − 2}. But unlike the set LF

n , the set LA
n is not a subgroup of

Z
∗
n. In fact it is not closed under the modulo n multiplication. Product of two

elements of LA
n may not belong to LA

n .

Example 6. Consider the previous example n = 3601 = 13 · 277.

a b0 = a225 mod n b1 = b20 mod n b2 = b21 mod n b3 = b22 mod n b4 = b23 mod n
60 60 3600 1 1 1
242 1048 3600 1 1 1
116 1663 1 1 1 1

Note that both 60 and 242 are A-liars, but their product (60×242) mod 3601 =
116 is an A-witness.

We shall try to identify a proper subgroup of Z∗
n, so that LA

n is a subset of
it. If n is not a Carmichael number then LF

n is a proper subgroup of Z∗
n. It is

also a superset of LA
n . So our earlier argument of getting a bounded probability

for false 1 (< 1/2) works. Unfortunately if n is a Carmichael number, LF
n = Z

∗
n,

and the argument does not stand. So we search for a different subgroup.
We assume that n is a Carmichael number. We try to find BA

n , a proper
subgroup of Z∗

n, so that LA
n ⊆ BA

n and our previous argument about size of LA
n

works (order is half of Z∗
n).

Definition 6: Let n be a Carmichael number and let i0 ≥ 0 be the largest integer
so that there exists an A-liar a0 such that au·2

i0

0 ≡ −1(mod n) (1 ≤ a0 < n and

n − 1 = u · 2k). Such an i0 exists as if we take a = n − 1, then (n − 1)u·2
0 ≡

(−1)u ≡ −1 (mod n).
As n is a Carmichael number and a0 is an A-liar, we have 1 ≡ an−1

0 ≡
au·2

k

0 (mod n). So the value of i0 must be less than k, i.e. 0 ≤ i0 < k. We define

est A-witness of a composite number n is of size O(lnn)2) provided ERH is true. Subsequently
E. Bach [BE] gave an explicit bound of 2(lnn)2 of the smallest A-witness under the same as-
sumption. The algorithm is simple, it tries with a = 2, · · · , ⌊2(lnn)2⌋ as A-witness. If all
of them fails, then n is prime. Subsequently M. O. Rabin [RMO] proposed the randomized
algorithm on A-witness.
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the following set using this i0.

BA
n = {a : 1 ≤ a < n and au·2

i0 ≡ ±1(mod n)}.

The following proposition will establish that LA
n ⊆ BA

n and BA
n is a proper

subgroup of Z∗
n. So its size is less than or equal to half of Z∗

n
5.

Proposition 8.

1. LA
n ⊆ BA

n ,

2. BA
n is a subgroup of Z∗

n,

3. Z
∗
n \BA

n 6= ∅ i.e. BA
n is a proper subgroup.

Proof:

1. Let a ∈ LA
n . There are two possible cases from the definition of LA

n :

Casr I: if au ≡ 1(mod n), then au·2
i0 ≡ 1(mod n), so a ∈ BA

n .

Case II: if au·2
i ≡ −1(mod n), then there are two possible cases. If i = i0,

then a ∈ BA
n . Otherwise, i < i0, so au·2

i0 ≡ (au·2
i

)2
i0−i ≡ (−1)2i0−i ≡

1(mod n). So a ∈ BA
n .

2. We check that BA
n is closed under the group operation. Let a, b ∈ BA

n ,

then au·2
i0 ≡ ±1(mod n) and bu·2

i0 ≡ ±1(mod n).

So (ab)u·2
i0 ≡ (au·2

i0
)(bu·2

i0
) ≡ (±1)(±1) ≡ ±1(mod n).

We conclude that BA
n is a subgroup of Z∗

n.

3. We have already proved that a Carmichael number cannot be a power of
one prime. So n = n1 × n2, where n1 and n2 are relatively prime odd
numbers.

Let a0 be an A-liar such that au·2
i0

0 ≡ −1(mod n) (there is always one).
We have an a1, 1 ≤ a1 < n1 and a1 ≡ a0 (mod n1). By the Chinese
Remainder Theorem there is a unique a ∈ Zn such that

a ≡ a1 (mod n1),

a ≡ 1 (mod n2).

We claim that a ∈ Z
∗
n \BA

n .
We have a1 ≡ a0 (mod n1) and a ≡ a1 (mod n1), implies that a ≡
a0 (mod n1). So we have au·2

i0 ≡ au·2
i0

0 ≡ −1 (mod n1).

Similarly we calculate au·2
i0 ≡ 1u·2

i0 ≡ 1 (mod n2).

So au·2
i0

mod n is neither equal to 1 nor equal to −1. So a 6∈ BA
n .

But then au·2
i0+1 ≡ 1 (mod n1) and also au·2

i0+1 ≡ 1 (mod n2). So we

have au·2
i0+1 ≡ 1 (mod n1n2) as the gcd(n1, n2) = 1. So a ∈ Z

∗
n.

QED.

We have proved that BA
n is a proper subgroup Z

∗
n and LA

n ⊆ BA
n . The order

of BA
n ≤ φ(n)

2 . A Carmichael number n has at least three prime factors. So the
value of φ(n) is much less than n−2. And the probability of a randomly chosen

a from {2, · · · , n− 2} to be in LA
n is less than (n−2)/2−2

n−3 < 1
2 .

A better analysis can prove that the size of A-liar set |LA
n | ≤ |Z∗

n|/4. If we
iterate the algorithm for k times, the probability that the Rabin-Miller algorithm
will declare a composite n to be prime is

γ(n, k) ≤ n− 1

π(n)
4−k = O(l4−k),

where π(n) be the set of primes that are ≤ n is estimated to be ≥ c(n−1)/ logn.
So l is the length of n.

Iterated version of Rabin-Miller algorithm.

5This also answers about the condition of the Lehmann’s algorithm which says that, if

there is some a ∈ {1, · · · , n− 1} so that a
n−1

2 ≡ au·2
k−1

≡ −1(mod n), then more than half

of the elements b of {1, · · · , n− 1} satisfy b
n−1

2 ≡ bu·2
k−1

6≡ ±1(mod n).
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isprimeRM(n, l) // n is odd ≥ 3, l ≥ 1
1 Find u, k so that n− 1 = u · 2k
2 for j ← 1 to l
3 a← rand{2, · · ·n− 2}
4 b← au mod n
5 if b ∈ {1, n− 1} continue
6 for i← 1 to k − 1
7 b← b2 mod n
8 if b = n− 1 continue

9 if b = 1 return 0 // certainly composite
10 return 0 // certainly composite
11 return 1

1.3.3 Generating Random Prime

It is important to generate random prime for different cryptographic applica-
tions. Miller-Rabin algorithm is used to generate that. Following is a scheme
to generate a random prime in the range 2, · · · ,m.

randPrime(m, l) // random prime 2 · · ·m
1 do

2 do

3 n← rand{2, · · ·m}
4 if n ≡ 0(mod 2) continue
5 while ¬isprimeRM(n, 1)
6 while ¬isprimeRM(n, l)
7 return n

The first test will almost often detect a composite n. The second test is to
increase confidence.

In some application it is necessary to generate a random prime of certain
length l e.g. a random prime of 1024 bits. This essentially means that the
random prime p ∈ [2l−1, 2l).

According to Bertrand’s Postulate, for ever n ≥ 1, there is a prime number p
with n < p ≤ 2n. A stronger result is that π(2n)−π(n) > n

3 log 2n , where π(x) is

the number of primes less than or equal to x. It implies that π(2l)− π(2l−1) ≥
c2l−1

l for l ≥ 2. So there are large number of primes in the range. We generate
random l-bits and use Millar-Rabin to test whether it is prime.

Example 7. π(1024)−π(512) > 512
3 log 1024 ≈ 56. There are actually 172−97 = 75

primes in that range.
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