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1 Basic Properties of Integers III

1.1 Quadratic Residues

Higher order congruence are more difficult to handle. We shall study a congru-
ence of the form x2 ≡ a( mod n) for odd integer n > 1. Let us consider a general
quadratic congruence ax2 + bx + c ≡ 0(mod p), where p is an odd1 prime and
a ∈ Z

∗
p. It is clear that the gcd(4a, p) = 1. So we write the congruence as

4a(ax2 + bx+ c) ≡ 0(mod p)

⇒ (2ax)2 + 2 · 2ax · b+ b2 − (b2 − 4ac) ≡ 0(mod p)

⇒ (2ax+ b)2 ≡ (b2 − 4ac)(mod p).

If we substitute y for 2ax + b and d for b2 − 4ac, we get y2 ≡ d(mod p).
If x ≡ x0(mod p) is a solution of the original congruence, then y ≡ 2ax0 +
b(mod p) is a solution of the transformed congruence. Again if y ≡ y0(mod p)
is a solution of the transformed congruence, then 2ax + b ≡ y0(mod p), i.e.
2ax0 ≡ y0 − b(mod p). The solution of this linear congruence, which always
exists as gcd(2a, p) = 1, gives the solution of the original congruence. In general
we are interested about odd positive integer n.
Definition 1: Let n be an odd positive integer. An integer a is called a quadratic
residue modulo n, if gcd(a, n) = 1 (a mod n belongs to Z

∗
n) and there is an

integer b such that a ≡ b2(mod n), then x ≡ b(mod n) is a solution of x2 ≡
a(mod n), and b is called a square root of a modulo n.

There are a’s that are not relatively prime to n, but satisfies the congruence
b2 ≡ a(mod n). As an example, 6 ≡ 92(mod 15). But 6 is not called quadratic
residue modulo 15. Quadratic residue and quadratic non-residue are defined for
elements of Z∗

n. Some of these elements are quadratic residue and others are
quadratic non-residue.

Example 1. We take n = 13, a prime number.

1 ≡ 12 ≡ 122(mod 13),

3 ≡ 42 ≡ 92(mod 13),

4 ≡ 22 ≡ 112(mod 13),

9 ≡ 32 ≡ 102(mod 13),

10 ≡ 62 ≡ 72(mod 13),

12 ≡ 52 ≡ 82(mod 13),

There are two square roots of all the perfect squares modulo 13. There will
always be at least two square roots of 1 modulo n. One is 1 and the other is
n− 1 as (n− 1)2 ≡ 1(mod n). This also tells us that there will be at least two
square roots of any perfect squares modulo n.
Note that half of the elements of Z∗

13 are perfect squares modulo 13. They are
the quadratic residues and the remaining half are the quadratic non-residues.
The collection of quadratic residues forms a subgroup of Z∗

n.

Example 2. In the second example let us consider a composite number, n = 15.

1The case of p = 2 is simple as Z2 = {0, 1}. The coefficients a, b can be either 0 or 1. So
x2 + x+ 1 ≡ 0(mod 2) cannot have any solution, but x2 + x ≡ 0(mod 2) has two solutions.

1



The elements of Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}.

1 ≡ 12 ≡ 42 ≡ 112 ≡ 142(mod 15),

4 ≡ 22 ≡ 72 ≡ 82 ≡ 132 ≡ (mod 15),

We observe that only prefect squares modulo 15 are 1 and 4. But each has four
square-roots modulo 15. 1 and 4 are the two quadratic residues modulo 15. The
quadratic non-residues are 2, 7, 8, 11, 13, 14.

Example 3. In the third example we take n = 9, a power of a prime, where
Z
∗
9 = {1, 2, 4, 5, 7, 8}.

1 ≡ 12 ≡ 82(mod 9),

4 ≡ 22 ≡ 72(mod 9),

7 ≡ 42 ≡ 52(mod 9),

In this case also there are only two square roots of 1 modulo 9. So there are two
square roots of all other perfect squares (quadratic residues) modulo 9. Half of
the elements are quadratic residues.
Definition 2: Let n,m ∈ Z and n > 0,

(Z∗
n)

m = {am : a ∈ Z
∗
n},

the collection of the mth powers of the elements of Z∗
n.

It is not difficult to prove the following facts

1. (Z∗
n)

m is a subgroup of Z∗
n.

2. Let a ∈ Z
∗
n and let l,m ∈ Z so that l and m are relatively prime. If

al ∈ (Z∗
n)

m, then a ∈ (Z∗
n)

m.

1.1.1 Quadratic Residue Modulo Odd Prime

We prove following interesting results related to any odd prime p.
Proposition 1. For any odd prime p, and q ∈ Z

∗
p, q

2 ≡ 1(mod p) if and only if
q = 1 or q = p− 1 ≡ −1(mod p).
Proof: If q = 1 or q = p− 1, then 12 ≡ 1(mod p) and (p− 1)2 ≡ p2 − 2p+ 1 ≡
1(mod p).
In the other direction, let q2 ≡ 1(mod p), so p|(q2 − 1). But then p is prime, so
p|q − 1 or p|q + 1. But q ∈ Z

∗
p, we have either q − 1 = 0 or q + 1 = p. QED.

Proposition 2. If q ∈ (Z∗
p)

2, where p is an odd prime, then q has exactly two
square roots in Z

∗
p.

Proof: Let q ≡ a2(mod p) and also q ≡ b2(mod p). So we have a2 ≡ b2(mod
p). We multiply both sides by (b−1)2 (modp) and get (ab−1)2 ≡ 1(mod p). By
the previous proposition we have ab−1 ≡ 1(mod p) or ab−1 ≡ p − 1(mod p).
So a ≡ b(mod p) a ≡ −b(mod p). So in Z

∗
p, a = ±b i.e. there are exactly two

square roots. QED.

Proposition 3. For any odd prime p, the size of (Z∗
p)

2 is p−1
2 .

Proof: We define the map, sq : Z∗
p → (Z∗

p)
2, a 7→ a2. Every image has two

distinct preimages, so 2|(Z∗
p)

2| = |Z∗
p| = p− 1. QED.

Example 4. Let p = 11, (Z∗
11)

2 = {12 = 1, 22 = 4, 32 = 9, 42 = 5, 52 = 3}, and
Z
∗
11 = {±1,±2,±3,±4,±5}.
If p is an odd prime, half of the elements of Z∗

p are quadratic residue and
other half are quadratic non-residue.
Theorem 4. (Euler’s Criterion) Let p be an odd prime and a ∈ Z

∗
p.

1. a(p−1)/2 ≡ ±1(mod p),

2. If a ∈ (Z∗
p)

2 then a(p−1)/2 ≡ 1(mod p),
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3. If a 6∈ (Z∗
p)

2 then a(p−1)/2 ≡ −1(mod p),

Proof:

1. Let b ≡ a(p−1)/2(mod p), so b2 ≡ ap−1 ≡ 1(mod p), by Euler’s theorem.
But we know that if b2 ≡ 1(mod p), then b ≡ 1, p− 1(mod p).

2. a ≡ b2(mod p). So a(p−1)/2 ≡ bp−1 ≡ 1(mod p).

3. a ∈ Z
∗
p \ (Z∗

p)
2.

We claim that for each b ∈ Z
∗
p there is a c ∈ Z

∗
p so that bc ≡ a(mod p)

and b 6= c.
If b = c, then a ≡ b2(mod p) and a ∈ (Z∗

p)
2. Our c = b−1a and it is

unique.
So we have the product of all elements of Z∗

p,

∏

b,c∈Z
∗

p

(b×p c) = a(p−1)/2.

We also claim that for each b ∈ Z
∗
p there is a c ∈ Z

∗
p so that bc ≡ 1( mod p).

We know that there are only two elements in Z
∗
p whose square is 1. They

are 1 and p− 1. Any other b, c whose product is 1 are distinct.
So we have another product of all elements of Z∗

p,







∏

a∈Z
∗

p

a






=



1×p (−1)×
∏

b×pc=1,b6=c

b×p c



 = −1.

Hence the result.

QED.

Example 5. We consider p = 13 and 5 ∈ Z
∗
13 \ (Z∗

13)
2.

5 = 1×13 5 = 2×13 9 = 3×13 6 = 4×13 11 = 7×13 10 = 8×13 12.

Also
1 = 2×13 7 = 3×13 9 = 4×13 10 = 5×13 8 = 6×13 11.

So we have 5
13−1

2 ≡ 1×13 ×13(−1)×13 1
13−3

2 ≡ −1(mod 13).
The conclusion of the Euler’s criterion is

a ∈ (Z∗
p)

2 if and only if a(p−1)/2 ≡ 1.

We have a byproduct of our earlier proof.
Theorem 5. (Wilson’s Theorem) If p is a prime, then (p− 1)! ≡ −1(mod p).
Proof: We have already proved that for an odd prime

∏

a∈Z
∗

p
a = −1. This is

also true for 2 where 1 is same as −1 mod 2. QED.

Proposition 6. (Converse of Wilson’s Theorem) If n is a positive integer greater
than 1 and (n− 1)! ≡ −1(mod n), then n is prime.
Proof: If n is not a prime, then n = ab, where 1 < a, b < n. From the given
condition we see that n|[(n − 1)! + 1]. So a|[(n − 1)! + 1]. But then a|(n − 1)!
implies that a|1 - a contradiction. QED.

Proposition 7. Let p be an odd prime and a, b ∈ Z
∗
p. If none of a, b are in (Z∗

p)
2,

then ab ∈ (Z∗
p)

2.
Proof: We have

(a×p b)
(p−1)/2 ≡ a(p−1)/2 ×p b

(p−1)/2 ≡ −1×p −1 ≡ 1(mod p).

So by the Euler’s criterion ab ∈ (Z∗
p)

2. QED.
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1.1.2 Quadratic Residue Modulo Power of Odd Prime

Let p be an odd prime and k > 0 be an integer. We are interested about the
solution of x2 ≡ a(mod pk) in Z

∗
pk . We have already seen characterisation in

case of k = 1. There are similar theorems for k > 1.
Proposition 8. Let p be any odd prime and let k be any positive integer. For

all q ∈ Z
∗
pk , q2 ≡ 1(mod pk) if and only if q = 1 or q = pk − 1 ≡ −1(mod pk).

Proof: If q = 1 or q = pk − 1, then 12 ≡ 1(mod pk) and (pk − 1)2 ≡
p2k − 2pk + 1 ≡ 1(mod pk).
In the other direction, let q2 ≡ 1( mod pk), so pk|(q2−1), implies p|(q−1)(q+1).
p is prime, so p|q− 1 or p|q+1. But p cannot divide both q− 1 as well as q+1;
otherwise p divides (q + 1)− (q − 1) = 2. But that is impossible as p is an odd
prime. So pk divides either q − 1 or q + 1. But then q ∈ Z

∗
pk . So if pk|(q − 1),

then q − 1 = 0, and if pk|(q + 1), then q + 1 = pk i.e. q = pk − 1. QED.

Following sequence of propositions are similar to the case of k = 1. We leave
them as exercise.
Proposition 9. For any odd prime p and positive integer k, if q ∈ (Z∗

pk)2, then
q has exactly two square roots in Z

∗
pk .

Proposition 10. For any odd prime p and a positive integer k, the size of (Z∗
pk)2

is φ(pk)
2 .

Proposition 11. (Generalisation of Euler’s Theorem)
Let p be an odd prime, k be a positive integer and a ∈ Z

∗
pk .

1. aφ(p
k)/2 ≡ ±1(mod pk),

2. If a ∈ (Z∗
pk)2 then aφ(p

k)/2 ≡ 1(mod pk),

3. If a 6∈ (Z∗
pk)2 then aφ(p

k)/2 ≡ −1(mod pk),

Proposition 12. (Generalisation of Wilson’s Theorem)

If p is an odd prime and k is a positive integer, then
∏

a∈Z
∗

pk
a ≡ −1(mod pk).

Proposition 13. Let p be an odd prime and k be a positive integer and a, b ∈
Z
∗
pk \ (Z∗

pk)2, then ab ∈ (Z∗
pk)2.

Finally we have the following interesting proposition.
Proposition 14. If p is an odd prime, k is a positive integer and a ∈ Z

∗
pk , then

a is a quadratic residue modulo p if and only if it is a quadratic residue modulo
pk.
Proof: Let a be a quadratic residue modulo pk i.e. gcd(a, pk) = 1 and there is an
integer b so that a ≡ b2( mod pk). So we have gcd(a, p) = 1 and a ≡ b2( mod p).
So a is quadratic residue (perfect square) modulo p.

Let a is not a quadratic residue modulo pk. If p|a, then a is not a quadratic
residue modulo p. So we assume that p 6 |a. Using the generalised Euler’s crite-

rion we have aφ(p
k)/2 ≡ −1(mod pk). This implies that aφ(p

k)/2 ≡ −1(mod p).
We use the Fermat’s little theorem

a ≡ ap ≡ (ap)p ≡ · · · ≡ ap
k−1

(mod p).

By substituting we get,

−1 ≡ aφ(p
k)/2 ≡ ap

k−1(p−1)/2 ≡ (ap
k−1

)(p−1)/2 ≡ a(p−1)/2(mod p).

So a is a quadratic non-residue modulo p. QED.

1.1.3 Quadratic Residue Modulo n

Now we consider the general case of odd n, a product of odd primes.
Proposition 15. Let n be an odd integer greater than 1. The prime decom-

position of n = pe11 · · · · · pekk . If a ∈ Z
∗
n is a perfect square, then a has 2k

square-roots.

Example 6. Let us look at Example (1.1) where n = 15 = 31× 51. The Chinese
Remainder Map is f : Z15 → Z3×Z5 is n 7→ (n mod 3, n mod 5). We know that
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there are two perfect squares in Z15 and they are 1 and 4. We have f(1) = (1, 1)
and f(4) = (1, 4). There are two square roots of 1 modulo 3, and they are 1
and 2. Similarly there are two square roots of 1 modulo 5, they are 1 and 4.
And two square roots of 4 modulo 5, they are 2 and 3.
So f(1) = (1, 1) = (12 mod 3, 12 mod 5) = (12 mod 3 , 42 mod 5) = (22 mod
3 , 12 mod 5) = (22 mod 3 , 42 mod 5). If b2 ≡ 1(mod 15), then f(b2) =
(b2 mod 3, b2 mod 5) = ((b mod 3)2 mod 3, (b mod 5)2 mod 5). As f(b) =
(b mod 3, b mod 5), the values of b are f−1(1, 1) = 1, f−1(1, 4) = 4, f−1(2, 1) =
11 and f−1(2, 4) = 14. So the square roots of 1 modulo 15 are 1, 4, 11, 14.
Proof: We consider the Chinese Remainder Map,

f : Zn → Zp
e1
1

× · · · × Zp
ek
k
.

We know that the restriction of f to Z
∗
n is also a bijection.

f : Z∗
n → Z

∗
p
e1
1

× · · · × Z
∗
p
ek
k

.

Let a ∈ (Z∗
n)

2, a perfect square modulo n i.e. a ≡ b2(mod n), for some
b ∈ Z

∗
n. We have f(a) = (a mod pe11 , · · · , a mod pekk ) = (a1, · · · ak) ∈ Z

∗
p
e1
1

×· · ·×
Z
∗
p
ek
k

. Let f(b) = (b mod pe11 , · · · , b mod pekk ) = (b1, · · · , bk) ∈ Z
∗
p
e1
1

× · · · × Z
∗
p
ek
k

.

Note that in a Chinese remainder map, f : ZN → Zn1
× · · · × Znk

, where

{ni}ki=1 are pairwise relatively prime, and N =
∏k

i=1 ni, f(xy) = ((xy) mod
n1, · · · , (xy) mod nk) = ((x mod n1)(y mod n1) mod n1, · · · , (x mod nk)(y mod
nk) mod nk) = (x1y1, · · · , xkyk).

So we have

(a1, · · · ak) = f(a) = f(b2) = (b21, · · · , b2k).

So we have perfect squares ai ≡ b2i (mod peii ), for all i = 1, · · · , k.

On the other hand, if we have perfect square, ai ≡ b2i (mod peii ), for all i =
1, · · · , k, then let us call f−1(b1, · · · , bk) = b ∈ Z

∗
n (the restriction of f is also a

bijection). So we have

f(b2) = (b2 mod pe11 , · · · , b2 mod pekk ) = (b21, · · · , b2k) = (a1, · · · , ak) = f(a).

As f is a bijection, a ≡ b2(mod n) i.e. a is a perfect square in Z
∗
n. This shows

that
a ∈ (Z∗

n)
2 if and only if ai ∈ (Z∗

p
ei
1

)2, for i = 1, · · · , k.

Each perfect square in Z
∗
p
ei
1

has two square roots, so a has 2k square roots.

This gives us the size of (Z∗
n)

2.

|(Z∗
n)

2| =
k
∏

i=1

|(Z∗
p
ei
1

)2| =
k
∏

i=1

φ(pei1 )/2 = φ(n)/2k.

We formally conclude that any element a ≡ b2 ∈ (Z∗
n)

2 has 2k square roots.
Let a ≡ b2(mod n) and a ≡ c2(mod n). So we have b2 ≡ c2(mod n). This
amounts to saying that b2i ≡ c2i (mod ni), for i = 1, · · · , k. So each bi ≡
±ci(mod ni) and there are altogether 2k possibilities. QED.

1.1.4 Testing of Quadratic Residuosity

We wish to test whether an integer a is quadratic residuemodulo n. If gcd(a, n) 6=
1, then a by definition is not a quadratic residue modulo n. So we assume that
a and n are relatively prime. We consider the following three cases:

1. n is an odd prime: We compute the value of a
p−1

2 mod n. This can be
done using repeated squaring algorithm given below

It computes ae mod n where a ∈ Zn and e is a positive integer. Let the
binary representation of e = (ek−1ek−2 · · · e1e0).
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modExpN(a, e, n)
exp ← 1
s ← a mod n
while e ≥ 1

if (e mod 2) = 1 then exp ← (exp × s) mod n
s ← s2 mod n
e ← e ÷ 2

return exp

k = ⌈log2 e⌉, so the loop is executed k times with k squaring and ≤ k
multiplications over Zn. So the running time is O(log e(logn)2). If 1 <
e < n, then it is O(log n)3).
We shall see afterward that there is better method for testing quadratic
residuosity for an odd prime.

2. n = pk where p is an odd prime: We have already proved that a is a
quadratic residue modulo pk if and only if a is a quadratic residue modulo
p. So this can also be done efficiently.

3. n is an odd integer: If the prime factorisation of n is known, then we can
use the previous method to determine whether a is a quadratic residue
modulo p for every prime factor of n. Then using this fact we can con-
clude about the quadratic residuocity of a modulo n (Chinese remainder
theorem). But if the factorisation is not given, there is no efficient algo-
rithm known to test quadratic residuocity. Factorisation is believed to be
a hard problem.
We shall see that the computation of Jacobi symbol, for which efficient
algorithm is known, gives partial answer.

If it is known that a is a quadratic residue modulo p, an odd prime, it is
necessary to find one b such that b2 ≡ a(mod p). We shall address this problem
afterward.

1.1.5 Square Roots of p− 1

Following theorem characterises the odd primes p such that p − 1 or −1 is a
quadratic residue modulo p. This has some interesting applications.
Proposition 16. Let p be an odd prime. p − 1 ∈ (Z∗

p)
2 if and only if p ≡

1(mod 4) i.e. p = 4k + 1.
Proof: By the Euler’s criterion, p − 1 is a quadratic residue modulo p if and
only if (p−1)(p−1)/2 ≡ 1(mod p). If p is of the form 4k+1, then (p−1)/2 = 2k,
an even number. So

(p− 1)2k ≡ (−1)2k ≡ 1(mod p).

If p ≡ 3(mod p), then p = 4k + 3 and (p− 1)/2 = 2k + 1, an odd number. So,

(p− 1)2k+1 ≡ (−1)2k+1 ≡ −1(mod p).

QED.

Proposition 17. There are infinitely many primes p ≡ 1(mod 4).
Proof: Let there be finite number of such primes, p1, · · · , pk, and let n =
4m2 + 1, where m = p1 · · · pk. Let p be a prime factor of n. Clearly p is not
equal to any one of p1, · · · , pk. We have (2m)2 ≡ −1(mod p). So −1 is a
quadratic residue of p and by our previous theorem, p ≡ 1(mod 4). This con-
tradicts our assumption. QED.

Proposition 18. (Thue’s Lemma) Let p be a prime and a is an integer such that
p 6 |a. There exists two integers x and y, such that (i) 0 < |x|, |y| < √p, and (ii)
ax ≡ y(mod p).

Example 7. Let n = 13 and a = 7. We have 7x = y(mod 13). (2, 1) is a

solution of the congruence satisfying 0 < 1, 2 <
√
13.
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Proof: Let
A = {au− v : u, v ∈ Z ∧ 0 ≤ u, v ≤ ⌊√p⌋}.

Clearly there are ⌊√p⌋ + 1 integers in the interval. So, the number of ordered
pairs (u, v) corresponding to the elements of A is greater than p. By the pigeon-
hole principle there are two distinct ordered pairs (u1, v1) and (u2, v2) such that
au1 − v1 ≡ au2 − v2(mod p). So we have a(u1 − u2) ≡ (v1 − v2)(mod p). This
gives a solution of ax ≡ y(mod p), where x = u1 − u2 and y = v1 − v2.
Both |x|, |y| < √p (as a prime cannot be a perfect square). If one of x or y is
0, the congruence ax ≡ y(mod p) implies that the other one will also be 0. But
both x = u1 − u2 and y = v1 − v2 cannot be 0 as the ordered pairs are distinct.
So both x and y are non-zero. QED.

Theorem 19. (Fermat)
An odd prime p is expressible as sum of two squares if and only if p ≡ 1(mod
4).
Proof: If p = a2 + b2, then one of a or b is odd and the other one is even. We
assume that a = 2c and b = 2d + 1. So a2 ≡ 0(mod 4) and b2 ≡ 1(mod 4),
implies that p = a2 + b2 ≡ 1(mod 4).

If p ≡ 1(mod 4), −1 is a quadratic residue modulo p. So we have an integer
a so that a2 ≡ −1(mod p), where gcd(p, a) = 1.
At this point we invoke the Thue’s lemma. There is a solution (X0, Y0) of
ax ≡ y(mod p) such that 0 < |X0|, |Y0| <

√
p. So we have

aX0 ≡ Y0(mod p),

(aX0)
2 ≡ Y 2

0 (mod p),

a2X2
0 ≡ Y 2

0 (mod p),

−X2
0 ≡ Y 2

0 (mod p), a2 ≡ −1(mod p)

X2
0 + Y 2

0 ≡ 0(mod p).

As p|(X2
0 + Y 2

0 ), X
2
0 + Y 2

0 = kp, where k ≥ 1. But 0 < |X0|, |Y0| <
√
p. So,

X2
0 + Y 2

0 < 2p, implies that k = 1. QED.

1.1.6 Computation of Fermat’s Two Square

The proof of Fermat’s two-square theorem depends on Thue’s Lemma and the
square-root of −1 modulo the prime p which is of the form 4k + 1. The proof
of Theu’s Lemma depends on pigeon-hole principle, and in that form it is not
computable.
But we can us the extended GCD algorithm to compute (X0, Y0) as a solution
of ax ≡ y(mod p). Consider the following is the sequence of remainders ri, i =
0, · · · , k, k + 1, and Bezout’s coefficients xi, yi, i = 0, · · · , k, computed by the
extended GCD algorithm.

(r0 = p, 1, 0), (r1 = a, 0, 1), · · · , (ri, xi, yi) · · · (rk, xk, yk),

where rk+1 = 0. As gcd(p, a) = rk = 1 = pxk + ayk. In general ri = pxi + ayi.
The computation steps are as usual.

ri−1 = riqi + ri+1,

xi+1 = xi−1 − xiqi,

yi+1 = yi−1 − yiqi, i = 1, · · · , k.

We continue the computation as long as ri ≥
√
p and stop at ri <

√
p. This is

possible as r0 = p > 0 = rk+1. On termination we set Y0 = ri and X0 = yi. We
know that ri = xip + yia i.e. Y0 = xip + X0a, so we have aX0 ≡ Y0(mod n)
where 0 < Y0 <

√
p.

We prove that 0 < |X0| <
√
p. Consider following two equations.

ri−1 = pxi−1 + ayi−1, (1)

ri = pxi + ayi. (2)
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(1)×yi− (2)×yi−1 gives us,

p(xi−1yi − xiyi−1) = yiri−1 − yi−1ri

p× (−1)i−1 = yiri−1 − yi−1ri

p = |yiri−1 − yi−1ri|
= |yi|ri−1 + |yi−1|ri, yiyi−1 ≤ 0,

yi and yi−1 have opposite signs.

≥ |yi|ri−1.

We can prove by induction that xi−1yi − xiyi−1 = (−1)i−1. So,

|X0| = |yi| ≤
p

ri−1
<

p

ri
=

p√
p
=
√
p.

Example 8. Let p = 83, a = 34, ⌊
√
83⌋ = 9 So it Following is the table for

extended GCD computation.

i ri xi yi qi
0 83 1 0 −
1 34 0 1 2
2 15 1 −2 2
3 4 −2 5

So we have Y0 = r3 = 4 and X0 = y3 = 5 such that 0 < X0, Y0 <
√
83. We have

83× (−2) + 34× 5 = 4. A solution of 34x ≡ y(mod 83).
Now we turn our attention to the computation of the square-root of −1

modulo prime p ≡ 1(mod 4). We want to compute an element a ∈ Z
∗
p so

that a2 ≡ −1(mod p). If we can find an element b ∈ Z
∗
p \ (Z∗

p)
2, we may take

a = b
p−1

4 , as a2 ≡ (b
p−1

4 )2 = b
p−1

2 ≡ −1(mod p) (Euler’s criterion).
We know that half of the elements of Z∗

p are quadratic non-residue. So we
can use the following randomised algorithm.

sqrt-1(p)
do

b← rand{1, · · · , p− 1}
a← b(p−1)/4

while (a2 mod p 6= p− 1)
return a

The probability of picking a quadratic non-residue is 1
2 . So the expected

number of times the loop is executed is 2. The probability that the algorithm
has not found a quadratic non-residue after k iterations is 1/2k. The algorithm
when terminates gives the correct a. But its running time is a random variable
that is bounded. This type of algorithms are known as Las Vegas algorithm.

Modular exponentiation is the costly part of computation and we have seen
that it takes O(log n)3) time.

We are now ready to express a prime p ≡ 1(mod 4) as a sum of two squares
in the following way. The input is p, where p ≡ 1(mod 4)

1. Find a ∈ Z
∗
p such that a2 ≡ −1(mod p).

2. Take a and run the modified extended-GCD algorithm to compute (X0, Y0).

Example 9. Let p = 977 = 4 × 244 + 1. Take 19 ∈ Z
∗
977 \ (Z∗

977)
2 so that

19(977−1)/4 ≡ 725(mod 977) and 7252 ≡ 976(mod 977). We have
√
977 > 31.

The run of the extended GCD algorithm on (p, a) is as follows:

i ri xi yi qi
0 977 1 0 −
1 725 0 1 1
2 252 1 −1 2
3 221 −2 3 1
4 31 3 −4 · · ·
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At this point we stop computation where Y0 = 31 and X0 = −4. We express
977 = Y 2

0 +X2
0 = 312 + 42.

Proposition 20. A prime p ≡ 1(mod 4) can be represented uniquely as a sum
of two squares (ignoring sign and order).
Proof: Let p = a2 + b2 = c2 + d2. We rewrite it as

a2d2 + b2d2 − b2c2 − b2d2 = (a2 + b2)d2 − (c2 + d2)b2 = p(d2 − b2) ≡ 0(mod p).

So we have (ad)2 − (bc)2 ≡ 0(mod p) i.e. (ad + bc) ≡ 0(mod p) or (ad − bc) ≡
0(mod p). But we know that a, b, c, d <

√
p. So there are two possibilities

either (i) ad− bc = 0, or (ii) ad+ bc = p.
The second condition gives us

p2 = (a2 + b2)(c2 + d2) = (ad+ bc)2 + (ac− bd)2 = p2 + (ac− bd)2.

It is equivalent to ac = bd.
We have two conditions (i) ad− bc = 0, or (ii) ac = bd.
If we consider the first condition ad = bc. We know that gcd(a, b) = 1, as p is
prime. So a|c i.e. c = ak and we get ad = kab implies that d = kb.
But then p = c2+d2 = k2(a2+ b2) and p is prime. So k = 1, which implies that
a = c and b = d.
Similarly from the other condition we get the same result. QED.

Proposition 21. If n be a positive integer written as n = N2m, where m is
square free, then n can be represented as sum of two squares if and only if m
does not contain a prime factor of the form 4k + 3.
Proof: Letm has no prime factor of the form 4k+3: ifm = 1, then n = N2+02.
If m = p1 · · · pk, where pi is either 2 or any prime of the form 4k + 1. So each
pi = a2i + b2i . Given two such primes pi and pj we have

pipj = (a2i + b2i )(a
2
j + b2j) = (aiaj + bibj)

2 + (aibj − biaj)
2.

So by induction we can prove that m can be expressed as a2 + b2. And finally
n = (aN)2 + (bN)2.

Let n = N2m can be written as a2 + b2. If m = 1, there is nothing to prove.
Let m > 1 and also let gcd(a, b) = d, a = dA, b = dB. We have

a2 + b2 = d2(A2 +B2) = n = N2m.

m is square free so d2|N2. So we have

A2 +B2 =
N2

d2
m = qp,

where p is an odd prime factor of m. So,

A2 +B2 ≡ 0(mod p).

As gcd(A,B) = 1, either A or B is relatively prime to p. Otherwise p will divide
both of them and the gcd(A,B) ≥ p, a contradiction.
Let A be relatively prime to p. So we have

AA′ ≡ 1(mod p)

So we have (A2 + B2)(A′)2 ≡ 0(mod p), implies that (AA′)2 + (BA′)2 ≡
1 + (BA′)2 ≡ 0(mod p). So −1 is a quadratic residue of p implies that p ≡
1(mod 4). QED.

Proposition 22. A positive integer can be represented as a sum of two squares
if and only if its prime factors of the form 4k + 3 occurs in even power.

References

[AD] Computational Number Theory by Abhijit Das, Pub. CRC Press, 2013,
ISBN 978-1-4398-6615-3.

9



[MD] Primality Testing in Polynomial Time From Randomized Algorithms to

“PRIMES is in P”, by Martin Dietzfelbinger, LNCS 3000 (Tutorial), Pub.
Springer, 2004, ISBN 3540403442.

[VS] A Computational Introduction to Number Theory and Algebra by Victor

Shoup, 2nd ed., Pub. Cambridge University Press, 2009, ISBN 978-0-521-
51644-0.

[EBV] A Course in Algebra by E B Vinberg, Graduate Studies in Mathemat-
ics, vol. 56, Pub. American Mathematical Society (Universities Press 2009),
ISBN 978-0-8218-4858-6.

10


