
Computer Science & Engineering Department
IIT Kharagpur

Computational Number Theory: CS60094
Lecture II

Instructor: Goutam Biswas Spring Semester 2014-2015

1 Basic Properties of Integers I

We have already informally introduced some of the following basic concepts. In most of these
case we shall omit the proofs.

1.0.1 Division Theorem

If a, b ∈ Z and b is positive, then there are two unique integers q (quotient) and r (remainder),
such that a = bq+r, where 0 ≤ r < b. The value of q = ⌊a/b⌋ and r = a mod b = a−b×⌊a/b⌋.
Example 1. If a = 14 and b = 5, then 14 = 5 × 2 + 4, so q = 2 and r = 4. If a = −14 and
b = 5, then −14 = 5×−3 + 1, so q = −3 and r = 1.

This can be generalised as follows: If a, b ∈ Z, b is positive, and x is a real number, then
there are two unique integers q (quotient) and r (remainder), such that a = bq + (⌈x⌉ + r),
where 0 ≤ r < b. In fact this is equivalent to saying that a− ⌈x⌉ = bq + r, 0 ≤ r < b.

We give a proof of the generalised form. It is clear that there are b integers in the interval
[x, x+ b). They are ⌈x⌉, · · · , ⌈x+ b⌉ − 1 = ⌈x⌉+ (b− 1).
Let c = a− ⌈x⌉. We define the set of non-negative integres

S = {c− by : y ∈ Z and c− by ≥ 0}.

We claim that S is a non-empty: if c ≥ 0, c − b · 0 ∈ S; otherwise c − b · c > 0 as b > 0 and
−c is positive, so c− b · c ∈ S.
By the well-ordering principle there is a smallest element r of S. Let r = c− bq, where q ∈ Z.
So a− ⌈x⌉ = c = bq + r i.e. a = bq + ⌈x⌉+ r where r ≥ 0.
We claim that r < b, otherwise 0 ≤ r − b = c− b(q + 1). So r − b ∈ S, but that is impossible
as r − b is less than r. So we have

a = bq + (⌈x⌉ + r), 0 ≤ r < b.

Clearly ⌈x⌉+ r ∈ [x, x+ r).

1.0.2 Binary Relation Divides (‘|’)

We define a binary relation ‘|’ on the set of integers, a|b. Examples are 3|12, but 5 6 |12.
For an integer n, let D(n) be the set of positive divisors of n. It is clear that D(n) =

D(−n). If m,n ∈ Z, then D(m) ∩ D(n) is the set of common divisors of m and n. If both
m and n are not zero, then D(m) ∩ D(n) is finite and has a largest element known as the
greatest common divisor of m and n. It is written as gcd(m,n) or at times (m,n). We have
the following proposition.

1

1.0.3 Bezout’s Identity

Proposition 1. Let m,n be integers so that both are not zero. gcd(m,n) is the smallest
positive integer that can be written in the form mx + ny, where x, y ∈ Z. This is known as
Bezout’s Identity.
Proof: We define the set of positive integres

S = {mx+ ny : x, y ∈ Z and mx+ ny > 0}.

The set S is non-empty. We assume without any loss of generality that m 6= 0. If m < 0,
then take x = −1 and y = 0; otherwise take x = 1 and y = 0. By the well ordering principle
there is a smallest element d ∈ S. Let d = mx0 + ny0. We claim that d|m and d|n. If d 6 |m,
then by the division theorem m = dq+ r, where q and r are integers and 0 < r < d. But then
r = m− dq = m− (mx0+ny0)q = m(1−x0q)−ny0q. Clearly r ∈ S. But that is not possible
as d is the smallest element of S and r < d. So r = 0 i.e. d|m. Similarly we can prove that
d|n. So the smallest element of S is in D(m) ∩D(n), a common divisor of m,n.

Let c ∈ D(m) ∩D(n), any common divisor of m and n such that m = cm′ and n = cn′.
We have d = mx0 + ny0 = c(m′x0 + n′y0). So c|d i.e. gcd(m,n) = d. 2

From the previous proof we further note that every element of

S = {mx+ ny : x, y ∈ Z and mx+ ny > 0}

is a multiple of d. If 1 ∈ S, then m and n are relatively prime. In other words if m,n are
relatively prime, then there are integers x, y such that mx+ ny = 1.

Following proposition gives an algebraic view of this identity.
Definition 1: Let R be a non-empty set equipped with two binary operations ‘+’ (addition
- need not be usual) and ‘·’ (multiplication - again need not be usual), where (R,+, 0) is
an abelian or commutative group with 0 as the identity element of ‘+’, and (R, ·, 1) is a
commutative monoid such that the operation ‘·’ is distributed over ‘+’. We call the algebraic
structure (R,+, 0, ·, 1), a commutative ring with identity.

Let I be a subgroup of (R,+, 0) such that for all a ∈ I and for all r ∈ R, a · r ∈ I. I is
called an ideal of R.

The set of integers Z is an example of a commutative ring with identity with the usual
addition and multiplication operations. We shall characterise gcd(m,n) = d through the
ideals of Z.

It is not difficult to show that for all a ∈ Z, the set aZ = {ax : x ∈ Z} is an ideal of Z.
Proposition 2. Let m,n be integers and gcd(m,n) = d, then dZ = mZ + nZ, We define
gcd(0, 0) = 0.
Proof: We use the following facts about an ideal over Z.

1. If I and J are two ideals, then so is I + J .

2. Every ideal I over Z is of the form aZ. Following is a proof of this fact.

Proof: If I = {0}, then d = 0. Take I 6= {0}. Consider

P = {a ∈ I : a > 0}.

The set is non-empty as both x and −x are in I and one of them will be positive. By
the well ordering principle there is a least element a ∈ P . From the definition of an
ideal, for all x ∈ Z, a · x ∈ I. So aZ ⊆ I.

2

Let b ∈ I, we claim that a|b; otherwise, b = aq + r, 0 < r < a. So, r = b − aq and r
must belong to P . But this is a contradiction as r < a. So b = ac for some c ∈ Z, and
I ⊆ aZ.

Now we come to the final proof. We already know that mZ + nZ = dZ for some d ∈ Z.
If m = 0 = n, then d = 0. So we assume that both m and n are not zero. It is clear
that m = m · 1 + n · 0 and n = m · 0 + n · 1 are in dZ. So d divides both m and n, hence
d ∈ D(m) ∩D(m).

Again d ∈ dZ = mZ + nZ, so d = mx0 + ny0. If c ∈ D(m) ∩D(n), then m = cm0 and
n = cn0 i.e. d = c(m0x0 + n0y0), so c|d. 2

1.1 GCD Algorithms

An efficient algorithm to find the greates common divisor (gcd) or highest common factor
(hcf) is known for more than two-thousand years. It is the well known a Euclid’s algorithm,
taught in the school.

1.1.1 Euclid’s Algorithm

Let s and l be two non-negative integers so that l ≥ s ≥ 0.

gcd(l, s) =

{

l if s = 0,
gcd(s, l mod s) otherwise.

If s > 0, we know that l = qs+r, where q = ⌊ l
s
⌋ and r = l mod s, so that 0 ≤ r < s. An integer

d is a divisor of s and l if and only if it is a divisor of s and r. So D(l)∩D(s) = D(s)∩D(r)
i.e. d = gcd(s, l) if and only if d = gcd(r, s).

The Euclidean algorithm simplifies the problem by reducing the arguments. And non-
negative arguments cannot be reduced indefinitely, so the process terminates.

Let l, s be integers so that l ≥ s ≥ 0. The Euclid’s algorithm generates two finite sequences
of non-negative integers, r0, r1, · · · , rn+1, the sequence of remainders; and q1, q2, · · · , qn, the
sequence of quotients. We set r0 = l, r1 = s.
If n > 0 and rn = gcd(l, s), the computation sequence is as follows:

r0 = r1q1 + r2, so that 0 < r2 < r1,

r1 = r2q2 + r3, 0 < r3 < r2,
...

ri−1 = riqi + ri+1, 0 < ri+1 < ri,
...

rn−1 = rnqn + (rn+1 = 0)

We have ri−1 = riqi + ri+1, and gcd(ri−1, ri) = gcd(ri, ri+1). So,

gcd(l, s) = gcd(s, r2) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn.

The algorithm correctly computes the GCD.
Proposition 3. The Number of steps of computation, n, is O(log s).

3

Proof: We have ri−1 = riqi + ri+1, ri+1 < ri, for all i = 1, 2, · · · , n. So, ri−1 = riqi + ri+1 ≥
ri + ri+1 > 2ri+1. This implies that ri+1 <

ri−1

2 .
In every two steps of computation, the length of the remainder is reduced by at least 1-bit.
The length of s is ⌈log2 s⌉ bits. So the number of steps (n) required to make the remainder
zero is less than 2 log2 s, i.e. n = O(log s). 2

Proposition 4. Let l > s > 0, and n ≥ 1 be the number of division steps required for gcd

computation. Then l ≥ Fn+2 and s ≥ Fn+1, where Fn is the nth Fibonacci number1.
Proof: The proof is by induction on the number of steps n.
Basis: (n = 1) - if there is one step of computation, then s ≥ 1 = F2, but then l > s, so
l ≥ 2 = F3.
We assume that the claim is true for n − 1 steps. We prove that the claim is true if there
are n steps. After the first step, l = sq1 + r, the computation takes n− 1 steps starting with
r1 = s and r2 = r. By our hypothesis s = r1 ≥ Fn+1 and r = r2 ≥ Fn.
Now l = sq1 + r2 =≥ s+ r2 ≥ Fn+1 + Fn = Fn+2. 2

Theorem 5. (Lamé) If l ≥ s ≥ 0 and s < Fk+1, then gcd(l, s) can be computed in less than k
steps.

This is a direct consequence of the previous proposition.
Proposition 6. Let l, s be integers so that l ≥ s > 0. If the number of steps to compute

gcd(l, s) is n, then n ≤ log s
log Φ + 1, where Φ = 1+

√
5

2 is the golden ratio and its approximate
value is 1.618.
Proof: s > 0, so n ≥ 1. If n = 1, the statement is true.
If n > 1, we claim that rn−i ≥ Φi, for i = 0, 1, · · · , n. That is r0 ≥ Φn, r1 ≥ Φn−1, · · · , rn−1 ≥
Φ1 = Φ, rn ≥ Φ0 = 1.
Case i = 0, 1: rn is not zero, so rn ≥ 1. rn < rn−1, so rn−1 ≥ rn + 1 ≥ 2 > Φ1.
Case n ≥ i > 1: We use induction:

rn−i = rn−i+1qn−i+1 + rn−i+2 ≥ rn−(i−1) + rn−(i−2) ≥ Φi−1 +Φi−2 = Φi−2(1 + Φ) = Φi.

Note that 1 + Φ = 1 + 1+
√
5

2 =
(

1+
√
5

2

)2
= Φ2. So s = r1 = rn−(n−1) ≥ Φn−1. Taking

logarithm we get log s ≥ (n− 1) log Φ, implies that n ≤ log s
log Φ + 1. 2

Number of steps in Euclid’s algorithm is not to be confused with the time complexity of
the algorithm. Let l, s be two k-bit numbers.

Crude Analysis: Number of divisions are O(log s) = O(k). Each division involves k or
fewer bit numbers, and it takes O(k2) basic steps. So the time complexity is O(k3).

But we can do a better analysis. At every stage we compute the quotient qi and remainder
ri+1, i = 1, · · · , n (ri−1 = qiri + ri+1). The time complexity for division is O(log qi × log ri).
So the running time is,

T =
n
∑

i=1

(log ri × log qi),

≤ log s
n
∑

i=1

log qi,

≤ log s
n
∑

i=1

(log ri−1 − log ri + 1), number of quotient bits,

1The sequence of Fn, the Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, · · ·.

4

≤ log s(log r0 − log rn + n),

≤ log s(log l + log s), n = O(log s),

= O(log s log l).

So the time complexity is quadratic, not cubic.

1.2 Extended Euclid’s Algorithm

We already have proved that the gcd(a, b) = d can be written as d = ax + by, where x, y
are integers. The Bezout’s coefficients x and y can be computed along with the gcd. The
corresponding algorithm is known as the extended Euclid’s algorithm.

Let l ≥ s ≥ 0, the extended gcd algorithm generates four finite sequences of integers,
r0, r1, · · · , rn+1 (r0 = l, r1 = s) is the sequence of remainders, q1, q2, · · · , qn is the sequence
of quotients, x0, x1, · · · , xn and y0, y1, · · · , yn are two sequences of coefficients. Similar to the
Euclid’s algorithm remainders and quotients can be computed as usual. The sequence of
coefficients satisfy the following property.

ri = lxi + syi, for all i = 0, · · · , n.

So the initial values of the coefficients are as follows:

x0 ← 1, y0 ← 0,
x1 ← 0, y1 ← 1,

satisfying r0 = lx0 + sy0 = l · 1 + s · 0 and s = r1 = lx1 + sy1 = l · 0 + s · 1.
The rules for computation of the next set of coefficients is simple to derive.

ri−1 = riqi + ri+1,

lxi−1 + syi−1 = (lxi + syi)qi + (lxi+1 + syi+1),

lxi+1 + syi+1 = l(xi−1 − xiqi) + s(yi−1 − yiqi).

So we have
xi+1 ← xi−1 − xiqi, yi+1 ← yi−1 − yiqi, for i← 1, 2, · · · , n.

Using this fact the extended algorithm looks as follows:

extGCD(l, s)
r0 ← l, r1 ← s
x0 ← 1, x1 ← 0
y0 ← 0, y1 ← 1
while r1 > 0 do

q ← ⌊r0/r1⌋
rt← r0 mod r1
r0 ← r1
r1 ← rt
xt← x0 − x1 × q, yt← y0 − y1 × q
x0 ← x1, x1 ← xt
y0 ← y1, y1 ← yt

return (r0, x0, y0)

5

The time complexity of the algorithm is similar to the original algorithm.
Starting from the input pair (l, s) = (r0, r1), we calculate a sequence of pairs,

(r1, r2), (r2, r3), · · · , (rn, rn+1 = 0). In the 2×2 matrix notation we may write for i = 1, · · · , n,

(

ri
ri+1

)

=

(

0 1
1 −qi

)(

ri−1

ri

)

If we expand the right hand side we get
(

ri
ri+1

)

=

(

0 1
1 −qi

)(

0 1
1 −qi−1

)

· · ·

(

0 1
1 −q1

)(

l = r0
s = r1

)

If we define Mi for i = 0, · · · , n,

Mi =

(

1 0
0 1

)

if i = 0,
(

0 1
1 −qi

)

Mi−1 if i > 0.

We ge the values of the coefficients.

Mi =

(

xi yi
xi+1 yi+1

)

and we have
(

ri
ri+1

)

= Mi

(

l
s

)

The determinant of each 2× 2 matrix is −1. So the determinant of Mi, det(Mi), is (−1)
i.

Example 2. We consider l = 40902 and s = 24140. Following table shows the values of
different variables at the beginning of each iteration.

i ri qi xi yi lxi + syi
0 40902 1 0 40920
1 24140 1 0 1 24140

2 16762 1 1 −1 16762
3 7378 2 −1 2 7378
4 2006 3 3 −5 2006
5 1360 1 −10 17 1360
6 646 2 13 −22 646
7 68 9 −36 61 68
8 34 2 337 −571 34

So we have gcd(40920, 24140) = 34 = 40920 × 337 + 24140 × (−571).

1.3 Binary GCD Algorithm

In a computer subtraction and division by 2 are less costly than ordinary division and extrac-
tion of remainder. Division by 2 can be performed by right-shift operation on data. We note
the following properties when l and s are positive integers.

6

• If both l and s are even, gcd(l, s) = 2×gcd(l/2, s/2).

• If l is odd and s is even, then gcd(l, s) = gcd(l, s/2).

• Similarly, if l is even and s is odd, then gcd(l, s) = gcd(l/2, s).

• If both l and s are odd, then gcd(l, s) = gcd((l − s)/2, s).

Using these facts Josef Stein proposed the binary gcd algorithm in 19672. The algorithm is
as follows. We assume that l and s are non-negative integers.

binGCD(l, s)
e← 0
while 2|l ∧ 2|s do

l← l/2, s← s/2, e← e+ 1
repeat

while 2|l do l← l/2
while 2|s do s← s/2
if s < l then l↔ s
s← s− l

until s = 0
return 2e × l

We claim that after two executation of the ‘repeat-until’ loop, the number of bits of the
larger argument is reduced by one. If the larger argument execute one of the inner ‘while’
loops, one bit is reduced. Otherwise, after the subtraction we get the larger argument to be
even which in the next iteration will be divided by 2.
So the time complexity is O(l2) where l is the length of the larger input.

We can use the binary GCD algorithm to compute the Bezout’s coefficients. Following is
an algorithm where both s, l are positive.

extBinGCD(l, s)
1 e← 0
2 while 2|l ∧ 2|s do

3 l← l/2, s← s/2, e← e+ 1
4 x0 ← 1, y0 ← 0, x1 ← 0, y1 ← 1
5 L← l, S ← s
6 repeat

7 while 2|l do
8 l← l/2
9 if 2|x0 ∧ 2|y0 then

10 x0 ← x0/2, y0 ← y0/2
11 else x0 ← (x0 + S)/2, y0 ← (y0 − L)/2
12 while 2|s do

13 s← s/2
14 if 2|x1 ∧ 2|y1 then

15 x1 ← x1/2, y1 ← y1/2

2It seems that it was known to China in the first century CE.

7

16 else x1 ← (x1 + S)/2, y1 ← (y1 − L)/2
17 if s < l then
18 l↔ s, x0 ↔ x1, y0 ↔ y1
19 s← s− l, x1 ← x1 − x0, y1 ← y1 − y0
20 until s = 0
21 d→ 2e × l
22 return (d, x0, y0)

If l = 2k · l′ and s = 2k · s′, the gcd(l, s) = 2k·gcd(l′, s′). If gcd(l′, s′) = xl′ + ys′, then
gcd(l, s) = 2kgcd(l′, s′) = 2k · (xl′ + ys′) = xl + ys. This justifies line:1-3 of the algorithm.

If none of l and s are even and s < l, then we perform line:18-19, where gcd(l, s) =
gcd(s, l) after exchange and gcd(s, l) = gcd(s− l, l). Here l = x0L+ y0S and s = x1L+ y1S,
s− l = (x1 − x0)L+ (y1 − y0)S. So the line: 19.

When the control reaches line:6 for the first time, at least one of s and l is odd, so one
of L and S is also odd. When the control reaches line:17, both l and s are odd. When
the computation finishes line:18-19, s is even and l is odd. So in the repeat-until-loop, in
every iteration only one while-loop will be executed. In fact except for the first iteration, the
second while-loop will always be executed as the value of s is even.

The computation of inner ‘while loop’ is as follows. Let us assume that in some iteration
we have s = x1L+ y1S and s = 2s′ (even). There are two possibilities.
Case I: when both x1 and y1 are even, we have s′ = x1

2 L + y1
2 S. So the modified values of

(x1, y1) are (x1/2, y1/2).
Case II: Let us assume, without any loss of generality, that x1 is odd and y1 is even. According
to our assumption, s = x1L + y1S is even. So L must be even. But then and S cannot be
even as all common even factors of S and L are taken out. In this case both (x + S) and
(y − L) are even and we may write s′ = (x+ S)L/2 + (y − L)S/2.

The analysis of worst case time complexity is as usual. It is O(l2), where l is the length
of the larger argument.

1.3.1 Fundamental Theorem of Arithmetic

The theorem says that every integer n > 1 can be expressed as unique (up to reordering)
product of finite number of primes.

n = pe11 pe22 · · · · · p
ek
k ,

where pi, i = 1, · · · , k are distinct primes and ei’s are positive integers. Clearly negative
integers also have unique factorisation with a (−1) factor.

For each prime p we define a map νp : Z \ {0} → N0
3 such that for each prime p and

integer n > 0, νp(n) = ep, where νp(1) = 0 and for all n > 1, n = pepm, such that p 6 |m. It is
clear that p 6 |n, then e = 0. Using this functional notation we may express any integer other
than zero as

n = ±
∏

p

pνp(n),

where the product is over all primes
This function can be used to state several interesting properties. Let a, b be non-zero

integers, then

3
Z \ {0} = {· · · ,−2,−1, 1, 2, · · ·}, N0 = {0, 1, 2, 3, · · ·}.

8

1. νp(a · b) = νp(a) + νp(b),

2. a|b if and only if νp(a) ≤ νp(b),

3. gcd(a, b) =
∏

p p
min(νp(a),νp(b)),

4. lcm(a, b) =
∏

p p
max(νp(a),νp(b)),

References

[AB] Computational Number Theory by Abhijit Das, (will be published from CRC Press).

[MD] Primality Testing in Polynomial Time From Randomized Algorithms to “PRIMES is in P”,
bMartin Dietzfelbinger, LNCS 3000 (Tutorial), Pub. Springer, 2004, ISBN 3540403442.

[VS] A Computational Introduction to Number Theory and Algebra by Victor Shoup, 2nd
ed., Pub. Cambridge University Press, 2009, ISBN 978-0-521-51644-0.

9

