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1 Generators and Discrete Logarithm

We prove that for any prime p, Z∗

p is a cyclic group. We further show that
for any odd prime p and any integer e ≥ 1, Z

∗

pe is also a cyclic group. In
case of p = 2, Z∗

2 = {1} is a cyclic group. Z∗

22 = {1, 3} also is a cyclic group.
But Z

∗

23 = {1, 3, 5, 7} is not a cyclic group. It is known that Z2e for e ≥ 3 is
isomorphic to Z2 × Z2e−1 . But we shall not prove this result.

1.1 Z∗

p
is cyclic for prime p

We prove a sequence of propositions to show that Z
∗

p is a cyclic group for any
odd prime p.
Definition 1: Given a group G, the smallest positive integer m, if it exists, is
called the exponent of G if for all g ∈ G, gm = 1.

Example 1. The exponent of Z∗

15 is 4 as 14 = 24 = 44 = 74 = 84 = 114 = 134 =

144 = 1. There is no other smaller integer satisfying this as 23 = 8.
Proposition 1. Let G be a commutative group and a, b ∈ G have orders m
and n respectively, such that gcd(m,n) = 1. The order of ab is mn.

Proof: Let The order of ab be α. As (ab)mn = (am)n(bn)m = 1 · 1 = 1, α|mn.
Again 1 = (ab)αm = (am)αbαm = 1 · bαm = bαm. So n|αm, implies that n|α.
Similarly we can prove that m|α. As m and n are coprimes, mn|α. So α = mn.
QED.

Proposition 2. If the commutative group G has exponent m, then it contains
an element of order m. A finite commutative group is cyclic if and only if its
order is equal to its exponent.

Proof: Let m = pe11 · · · p
ek
k be the prime factorisation of m. Define mi = m/pi,

i = 1, · · · , k.
We claim that for each i = 1, · · · , k, there is an ai ∈ G such that ami

i 6= 1.
If that is not the case, then there is some i, 1 ≤ i ≤ k, such that for all a ∈ G,
ami = 1. But that is impossible as m is the smallest such positive integer and
mi < m.

Let a1, · · · , ak ∈ G be such that ami

i 6= 1, for each i, 1 ≤ i ≤ k. Let ni =
m
p
ei
i

and let bi = ani

i , for all i = 1, · · · , k. We claim that the order of bi is peii ,
i = 1, · · · , k.

We have b
p
ei−1

i

i = (ani

i )p
ei−1

i = a
m/pi

i 6= 1. But b
p
ei
i

i = (ani

i )p
ei
i = ami = 1.

The orders of bi’s are pairwise relatively prime. We have already proved that
in a commutative group if the order of two elements a and b are coprime, them
the order of ab is the product of their individual orders.
So the order of

∏k
i=1 bi is p

ei
i · · · p

ek
k = m.

Let the size of G is m.
G is cyclic: there is an element a ∈ G such that < a >= G. So the order of a
is m and m is the exponent.
m is the exponent: there is an element whose order is m. So G is cyclic. QED.

Definition 2: Let R be a commutative ring with identity. An element a ∈ R is
called a divisor of an element b ∈ R if there is a c such that ac = b. A unit of
R is a divisor of the identity of R. The set of units of R is denoted by R∗.

If a ∈ R is a unit, there is b ∈ R such that ab = 1. If there is another c ∈ R
such that ac = 1, then

c = c · 1 = c · (ab) = (a · c) · b = 1 · b = b.
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We call b the inverse of a and denote it by a−1.

Example 2. Two units of Z are ±1. All non-zero elements are units of Q.
Proposition 3. If R is a commutative ring with identity, then R∗ is a com-
mutative group under multiplication.

Proof: It is clear that 1 ∈ R∗. If a, b ∈ R∗, then there are c, d ∈ R such that
ac = 1 = bd. So (ab) · (cd) = (ac) · (bd) = 1 · 1 = 1. So R∗ is closed under
multiplication.
As ac = 1, we have c = a−1 ∈ R∗. QED.

If R is non-trivial and R \ {0} = R∗, then R is a field e.g. Q, R, Z∗

p for any
prime p are fields.
Definition 3: If R is a non-trivial commutative ring with identity and does not
have any zero divisor, then it is an integral domain.
Proposition 4. If D is an integral domain and G is a finite subgroup of D∗,
then G is cyclic.

Proof: Let the exponent of G be m ≤ |G|. We know that for all a ∈ G, am = 1.
So the elements of G are the roots of Xm − 1 = 0 in D[X ]. But it is known
that a polynomial of degree m over an integral domain has at most m roots. So
m = |G| and by the proposition (1.1) G is cyclic. QED.

Corollary 5. For every prime Zp is a field and Z
∗

p is finite and cyclic.

1.2 Z
∗

pe
is Cyclic for Odd Prime p

We prove the following propositions.
Proposition 6. For every positive integer n and e, if a ≡ b(mod ne), then
an ≡ bn(mod ne+1).

Proof: We have a = b+ kne, so

an = (b + kne)n = bn +

(
n

1

)

bn−1kne +

n∑

i=2

(
n

i

)

bn−i(kne)i ≡ bn(mod ne+1).

QED.

Proposition 7. Let p be a prime and e be a positive integer such that pe > 2.
If a ≡ 1 + pe(mod pe+1), then ap ≡ 1 + pe+1(mod pe+2).

Proof: Suppose a ≡ 1 + pe(mod pe+1). By the previous lemma (1.2), ap ≡
(1 + pe)p(mod pe+2). But then

(1 + pe)p = 1 + p · pe +

p−1
∑

i=2

(
p

i

)

pei + pep.

But we already know that p|
(
p
i

)
, when p is a prime and 0 < i < p. So each term

of the sum is divisible by p2e+1. But then e+ 2 ≤ 2e+ 1 for all e ≥ 1. So each
term of the sum is divisible by pe+2. As pe > 2, it is not possible that p = 2
and e = 1 i.e. ep− e ≥ 2. So pep is divisible by pe+2. QED.

Proposition 8. If p is an odd prime and e is a positive integer, then Z
∗

pe is
cyclic.

Proof: We have already proved that Z
∗

p is cyclic. So we take e > 1. Let
x ∈ Z and [x]p generates Z∗

p i.e. the order of x is p− 1 (xp−1 ≡ 1(mod p). Let
the multiplicative order of x in Z

∗

pe be m i.e. xm ≡ 1(mod pe). So we have
xm ≡ 1(mod p). This implies that (p − 1) divides m and we conclude that
(xm/p−1)p−1 = xm ≡ 1(mod pe) i.e. the multiplicative order of xm/p−1 in Zpe

is p− 1. If we can find an y so that the multiplicative order of y in Z
∗

pe is pe−1,

then we have the element xm/p−1 · y whose order is pe−1(p− 1) in Z
∗

pe .
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We take y = 1 + p. All elements of Zpe can be encoded as a e-digit number
in radix-p. The representation for y is 0 · · · 011 = p1 + p0.
According to propositon (1.2), y = 1 + p implies yp ≡ 1 + p2(mod p3). So
the value of yp mod p3 is “101” in radix-p numeral. Clearly these three digits
remain the same for e-digit representation of yp mod pe. In the same way we
have the following values:

y mod pe =

e
︷ ︸︸ ︷

0 · · · 011

yp mod pe =

e
︷ ︸︸ ︷

ae−1 · · ·a3101, y
p ≡ 1 + p2(mod p3)

yp
2

mod pe =

e
︷ ︸︸ ︷

be−1 · · · b31001, y
p3

≡ 1 + p3(mod p4)

...
...

...

yp
e−2

mod pe =

e
︷ ︸︸ ︷

10 · · · 001, yp
e−2

≡ 1 + pe−1(mod pe)

yp
e−1

mod pe =

e
︷ ︸︸ ︷

00 · · · 001, yp
e−1

≡ 1 + pe(mod pe)

So the order of y is pe−1. QED.

Example 3. We know that Z∗

5 is a cyclic group with generator 2. The generator
for Z52 is 2 × (5 + 1) = 12. Note that the multiplicative order of 2 in Z52 is
4 (2, 4, 3, 1) and that of 6 is 5 (6, 11, 16, 21, 1). As the gcd(4, 5) = 1, the mul-
tiplicative order of 6×2 = 12 in Z52 is 5×4 = φ(25). So 12 is a generator of Z52 .

1.3 Generator and Discrete Log in Z∗

p

We know that for any prime p, Z
∗

p is a cyclic group. So there are φ(p − 1)
generators of Z∗

p. If g is a generator of Z∗

p and y ∈ Z∗

p, then there is an integer
x, 0 ≤ x < p−1 such that gx = y. The integer x is called the discrete logarithm
of y to the base g in Z∗

p, logg y = x.
So we have two important computational problems - finding a generator g of

Z
∗

p and given a g and y, finding the discrete log x. If g ∈ G is not a generator,
but generates a subgroup G of Z∗

p, such that the order of < g >= G is q. We
know that q|p − 1. In this case if y ∈ G, then gx = y or logg y = x, where
0 ≤ x < q.

1.3.1 Generator for Z∗

p

There is no known efficient algorithm for finding generator of Z∗

p. Even if the
prime factorisation of p− 1 is given, we have probabilistic algorithm. The input
to the algorithm is an odd prime p and the prime factorisation of p − 1. The
output is a generator of Z∗

p. Let

p− 1 =

k∏

i=1

peii .

Our algorithm relies on the following proposition.
Proposition 9. G is a commutative group and a ∈ G is such that for some
prime p and an integer e ≥ 1, ap

e

= 1, but ap
e−1

6= 1, then the order of a is pe.

Proof: Let m be the order of a. So m|pe i.e. m = pf , 0 ≤ f ≤ e. If f < e, then

ap
e−1

= (ap
f

)p
e−f−1

= 1p
e−f−1

= 1 - is a contradiction. QED.

In the randomised algorithm we pick up (at random) a1, · · · , ak so that the

order of gi = a
(p−1)/pi

i , is peii , for i = 1, · · · , k. It is known that the order of
∏k

i=1 gi is
∏k

i=1 p
ei
i = p− 1.
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for i ← 1 to k

repeat

a ← rand{1, · · ·p− 1}

b ← a(p−1)/pi

until b 6= 1

gi ← a(p−1)/p
ei
i

g ←
∏k

i=1 gi
return g

We establish the correctness of the algorithm. Let qi = (p − 1)/peii . So

1 6= b = (aqi)p
ei−1

i = g
p
ei−1

i

i , but g
p
ei
i

i = ap−1 = 1. So the order of gi is p
ei
i .

As gcd(peii , p
ej
j ) = 1, 1 ≤ i < j ≤ k, the order of g is p − 1. The algorithm if

terminates gives correct output.
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