Computer Science & Engineering Department IIT Kharagpur Computational Number Theory: CS60094 Lecture X

Instructor: Goutam Biswas

Spring Semester 2014-2015

1 Generators and Discrete Logarithm

We prove that for any prime p, \mathbb{Z}_p^* is a cyclic group. We further show that for any odd prime p and any integer $e \geq 1$, $\mathbb{Z}_{p^e}^*$ is also a cyclic group. In case of p = 2, $\mathbb{Z}_2^* = \{1\}$ is a cyclic group. $\mathbb{Z}_{2^2}^* = \{1,3\}$ also is a cyclic group. But $\mathbb{Z}_{2^3}^* = \{1,3,5,7\}$ is not a cyclic group. It is known that \mathbb{Z}_{2^e} for $e \geq 3$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{e-1}}$. But we shall not prove this result.

1.1 \mathbb{Z}_p^* is cyclic for prime p

We prove a sequence of propositions to show that \mathbb{Z}_p^* is a cyclic group for any odd prime p.

<u>Definition 1:</u> Given a group G, the smallest positive integer m, if it exists, is called the exponent of G if for all $g \in G$, $g^m = 1$.

<u>Example 1.</u> The exponent of \mathbb{Z}_{15}^* is 4 as $1^4 = 2^4 = 4^4 = 7^4 = 8^4 = 11^4 = 13^4 = 14^4 = 1$. There is no other smaller integer satisfying this as $2^3 = 8$.

Proposition 1. Let G be a commutative group and $a, b \in G$ have orders m and n respectively, such that gcd(m, n) = 1. The order of ab is mn.

Proof: Let The order of ab be α . As $(ab)^{mn} = (a^m)^n (b^n)^m = 1 \cdot 1 = 1$, $\alpha | mn$. Again $1 = (ab)^{\alpha m} = (a^m)^{\alpha} b^{\alpha m} = 1 \cdot b^{\alpha m} = b^{\alpha m}$. So $n | \alpha m$, implies that $n | \alpha$. Similarly we can prove that $m | \alpha$. As m and n are coprimes, $mn | \alpha$. So $\alpha = mn$. QED.

Proposition 2. If the commutative group G has exponent m, then it contains an element of order m. A finite commutative group is cyclic if and only if its order is equal to its exponent.

Proof: Let $m = p_1^{e_1} \cdots p_k^{e_k}$ be the prime factorisation of m. Define $m_i = m/p_i$, $i = 1, \cdots, k$.

We claim that for each $i = 1, \dots, k$, there is an $a_i \in G$ such that $a_i^{m_i} \neq 1$. If that is not the case, then there is some $i, 1 \leq i \leq k$, such that for all $a \in G$, $a^{m_i} = 1$. But that is impossible as m is the smallest such positive integer and $m_i < m$.

Let $a_1, \dots, a_k \in G$ be such that $a_i^{m_i} \neq 1$, for each $i, 1 \leq i \leq k$. Let $n_i = \frac{m}{p_i^{e_i}}$ and let $b_i = a_i^{n_i}$, for all $i = 1, \dots, k$. We claim that the order of b_i is $p_i^{e_i}$, $i = 1, \dots, k$.

We have $b_i^{p_i^{e_i-1}} = (a_i^{n_i})^{p_i^{e_i-1}} = a_i^{m/p_i} \neq 1$. But $b_i^{p_i^{e_i}} = (a_i^{n_i})^{p_i^{e_i}} = a_i^m = 1$.

The orders of b_i 's are pairwise relatively prime. We have already proved that in a commutative group if the order of two elements a and b are coprime, them the order of ab is the product of their individual orders.

So the order of $\prod_{i=1}^{k} b_i$ is $p_i^{e_i} \cdots p_k^{e_k} = m$. Let the size of G is m.

G is cyclic: there is an element $a \in G$ such that $\langle a \rangle = G$. So the order of a is m and m is the exponent.

m is the exponent: there is an element whose order is m. So G is cyclic. QED.

<u>Definition 2:</u> Let R be a commutative ring with identity. An element $a \in R$ is called a *divisor* of an element $b \in R$ if there is a c such that ac = b. A *unit* of R is a divisor of the *identity* of R. The set of units of R is denoted by R^* .

If $a \in R$ is a *unit*, there is $b \in R$ such that ab = 1. If there is another $c \in R$ such that ac = 1, then

$$c = c \cdot 1 = c \cdot (ab) = (a \cdot c) \cdot b = 1 \cdot b = b.$$

We call b the inverse of a and denote it by a^{-1} .

Example 2. Two units of \mathbb{Z} are ± 1 . All non-zero elements are units of \mathbb{Q} . **Proposition 3.** If R is a commutative ring with identity, then R^* is a commutative group under multiplication.

Proof: It is clear that $1 \in R^*$. If $a, b \in R^*$, then there are $c, d \in R$ such that ac = 1 = bd. So $(ab) \cdot (cd) = (ac) \cdot (bd) = 1 \cdot 1 = 1$. So R^* is closed under multiplication. As ac = 1, we have $c = a^{-1} \in R^*$. QED.

If R is non-trivial and $R \setminus \{0\} = R^*$, then R is a field e.g. \mathbb{Q} , \mathbb{R} , \mathbb{Z}_p^* for any prime p are fields.

<u>Definition 3:</u> If R is a non-trivial commutative ring with identity and does not have any zero divisor, then it is an integral domain.

Proposition 4. If D is an *integral domain* and G is a finite subgroup of D^* , then G is cyclic.

Proof: Let the exponent of G be $m \leq |G|$. We know that for all $a \in G$, $a^m = 1$. So the elements of G are the roots of $X^m - 1 = 0$ in D[X]. But it is known that a polynomial of degree m over an integral domain has at most m roots. So m = |G| and by the proposition (1.1) G is cyclic. QED.

Corollary 5. For every prime \mathbb{Z}_p is a field and \mathbb{Z}_p^* is finite and cyclic.

1.2 $\mathbb{Z}_{p^e}^*$ is Cyclic for Odd Prime p

We prove the following propositions.

Proposition 6. For every positive integer n and e, if $a \equiv b \pmod{n^e}$, then $a^n \equiv b^n \pmod{n^{e+1}}$.

Proof: We have $a = b + kn^e$, so

$$a^{n} = (b + kn^{e})^{n} = b^{n} + {\binom{n}{1}}b^{n-1}kn^{e} + \sum_{i=2}^{n} {\binom{n}{i}}b^{n-i}(kn^{e})^{i} \equiv b^{n} \pmod{n^{e+1}}.$$
QED.

Proposition 7. Let p be a prime and e be a positive integer such that $p^e > 2$. If $a \equiv 1 + p^e \pmod{p^{e+1}}$, then $a^p \equiv 1 + p^{e+1} \pmod{p^{e+2}}$.

Proof: Suppose $a \equiv 1 + p^e \pmod{p^{e+1}}$. By the previous lemma (1.2), $a^p \equiv (1 + p^e)^p \pmod{p^{e+2}}$. But then

$$(1+p^{e})^{p} = 1+p \cdot p^{e} + \sum_{i=2}^{p-1} {p \choose i} p^{ei} + p^{ep}.$$

But we already know that $p|\binom{p}{i}$, when p is a prime and 0 < i < p. So each term of the sum is divisible by p^{2e+1} . But then $e+2 \le 2e+1$ for all $e \ge 1$. So each term of the sum is divisible by p^{e+2} . As $p^e > 2$, it is not possible that p = 2 and e = 1 i.e. $ep - e \ge 2$. So p^{ep} is divisible by p^{e+2} . QED.

Proposition 8. If p is an odd prime and e is a positive integer, then $\mathbb{Z}_{p^e}^*$ is cyclic.

Proof: We have already proved that \mathbb{Z}_p^* is cyclic. So we take e > 1. Let $x \in \mathbb{Z}$ and $[x]_p$ generates \mathbb{Z}_p^* i.e. the order of x is p-1 ($x^{p-1} \equiv 1 \pmod{p}$). Let the multiplicative order of x in $\mathbb{Z}_{p^e}^*$ be m i.e. $x^m \equiv 1 \pmod{p^e}$. So we have $x^m \equiv 1 \pmod{p}$. This implies that (p-1) divides m and we conclude that $(x^{m/p-1})^{p-1} = x^m \equiv 1 \pmod{p^e}$ i.e. the multiplicative order of $x^{m/p-1}$ in \mathbb{Z}_{p^e} is p-1. If we can find an y so that the multiplicative order of y in $\mathbb{Z}_{p^e}^*$ is p^{e-1} , then we have the element $x^{m/p-1} \cdot y$ whose order is $p^{e-1}(p-1)$ in $\mathbb{Z}_{p^e}^*$.

We take y = 1 + p. All elements of \mathbb{Z}_{p^e} can be encoded as a *e*-digit number in radix-*p*. The representation for *y* is $0 \cdots 011 = p^1 + p^0$. According to propositon (1.2), y = 1 + p implies $y^p \equiv 1 + p^2 \pmod{p^3}$. So the value of $y^p \mod p^3$ is "101" in radix-*p* numeral. Clearly these three digits remain the same for *e*-digit representation of $y^p \mod p^e$. In the same way we have the following values:

$$y \mod p^{e} = \underbrace{0 \cdots 011}_{e}^{e}$$

$$y^{p} \mod p^{e} = \underbrace{a_{e-1} \cdots a_{3}101}_{e}, y^{p} \equiv 1 + p^{2} \pmod{p^{3}}$$

$$y^{p^{2}} \mod p^{e} = \underbrace{b_{e-1} \cdots b_{3}1001}_{e}, y^{p^{3}} \equiv 1 + p^{3} \pmod{p^{4}}$$

$$\vdots \vdots \vdots$$

$$y^{p^{e-2}} \mod p^{e} = \underbrace{10 \cdots 001}_{e}, y^{p^{e-2}} \equiv 1 + p^{e-1} \pmod{p^{e}}$$

$$y^{p^{e-1}} \mod p^{e} = \underbrace{00 \cdots 001}_{e}, y^{p^{e-1}} \equiv 1 + p^{e} \pmod{p^{e}}$$

So the order of y is p^{e-1} .

QED.

Example 3. We know that \mathbb{Z}_5^* is a cyclic group with generator 2. The generator for \mathbb{Z}_{5^2} is $2 \times (5+1) = 12$. Note that the multiplicative order of 2 in \mathbb{Z}_{5^2} is 4 (2, 4, 3, 1) and that of 6 is 5 (6, 11, 16, 21, 1). As the gcd(4, 5) = 1, the multiplicative order of $6 \times 2 = 12$ in \mathbb{Z}_{5^2} is $5 \times 4 = \phi(25)$. So 12 is a generator of \mathbb{Z}_{5^2} .

1.3 Generator and Discrete Log in \mathbb{Z}_p^*

We know that for any prime p, \mathbb{Z}_p^* is a cyclic group. So there are $\phi(p-1)$ generators of \mathbb{Z}_p^* . If g is a generator of \mathbb{Z}_p^* and $y \in \mathbb{Z}_p^*$, then there is an integer $x, 0 \leq x < p-1$ such that $g^x = y$. The integer x is called the *discrete logarithm* of y to the base g in \mathbb{Z}_p^* , $\log_q y = x$.

So we have two important computational problems - finding a generator g of \mathbb{Z}_p^* and given a g and y, finding the *discrete log* x. If $g \in G$ is not a generator, but generates a subgroup G of \mathbb{Z}_p^* , such that the order of $\langle g \rangle = G$ is q. We know that q|p-1. In this case if $y \in G$, then $g^x = y$ or $\log_g y = x$, where $0 \leq x < q$.

1.3.1 Generator for \mathbb{Z}_p^*

There is no known efficient algorithm for finding generator of \mathbb{Z}_p^* . Even if the prime factorisation of p-1 is given, we have probabilistic algorithm. The input to the algorithm is an odd prime p and the prime factorisation of p-1. The output is a generator of \mathbb{Z}_p^* . Let

$$p-1 = \prod_{i=1}^k p_i^{e_i}.$$

Our algorithm relies on the following proposition.

Proposition 9. *G* is a commutative group and $a \in G$ is such that for some prime *p* and an integer $e \ge 1$, $a^{p^e} = 1$, but $a^{p^{e-1}} \ne 1$, then the order of *a* is p^e .

Proof: Let *m* be the order of *a*. So $m | p^e$ i.e. $m = p^f$, $0 \le f \le e$. If f < e, then $a^{p^{e^{-1}}} = (a^{p^f})^{p^{e^{-f-1}}} = 1^{p^{e^{-f-1}}} = 1$ - is a contradiction. QED.

In the randomised algorithm we pick up (at random) a_1, \dots, a_k so that the order of $g_i = a_i^{(p-1)/p_i}$, is $p_i^{e_i}$, for $i = 1, \dots, k$. It is known that the order of $\prod_{i=1}^k g_i$ is $\prod_{i=1}^k p_i^{e_i} = p - 1$.

```
for i \leftarrow 1 to k

repeat

a \leftarrow rand\{1, \cdots p-1\}

b \leftarrow a^{(p-1)/p_i}

until b \neq 1

g_i \leftarrow a^{(p-1)/p_i^{e_i}}

g \leftarrow \prod_{i=1}^k g_i

return g
```

We establish the correctness of the algorithm. Let $q_i = (p-1)/p_i^{e_i}$. So $1 \neq b = (a^{q_i})^{p_i^{e_i-1}} = g_i^{p_i^{e_i-1}}$, but $g_i^{p_i^{e_i}} = a^{p-1} = 1$. So the order of g_i is $p_i^{e_i}$. As $gcd(p_i^{e_i}, p_j^{e_j}) = 1, 1 \leq i < j \leq k$, the order of g is p-1. The algorithm if terminates gives correct output.

References

[VS] A Computational Introduction to Number Theory and Algebra by Victor Shoup, 2nd ed., Pub. Cambridge University Press, 2009, ISBN 978-0-521-51644-0.