Computer Science & Engineering Department
ITT Kharagpur
Computational Number Theory: CS60094
Lecture X

Instructor: Goutam Biswas Spring Semester 2014-2015

1 Generators and Discrete Logarithm

We prove that for any prime p, Z; is a cyclic group. We further show that
for any odd prime p and any integer e > 1, Z;e is also a cyclic group. In
case of p = 2, Z5 = {1} is a cyclic group. Z3. = {1,3} also is a cyclic group.
But Z3s = {1,3,5,7} is not a cyclic group. It is known that Zge for e > 3 is
isomorphic to Zg X Zse—1. But we shall not prove this result.

1.1z is cyclic for prime p

We prove a sequence of propositions to show that Z; is a cyclic group for any
odd prime p.

Definition 1: Given a group G, the smallest positive integer m, if it exists, is
called the exponent of G if for all g € G, g™ = 1.

Example 1. The exponent of Zj; is4as 11 =21=41=71=81 =111 =131 =
14* = 1. There is no other smaller integer satisfying this as 23 = 8.
Proposition 1. Let G be a commutative group and a,b € G have orders m
and n respectively, such that ged(m,n) = 1. The order of ab is mn.

Proof: Let The order of ab be a. As (ab)™™ = (a™)" (™)™ =1-1=1, a|mn.
Again 1 = (ab)®™ = (a™)*b*™ = 1-b*"™ = b*™. So n|am, implies that n|a.
Similarly we can prove that m|a. As m and n are coprimes, mn|a. So a = mn.
QED.

Proposition 2. If the commutative group G has exponent m, then it contains
an element of order m. A finite commutative group is cyclic if and only if its
order is equal to its exponent.

Proof: Let m = p{* - - - p;* be the prime factorisation of m. Define m; = m/p;,
i=1,--- k.
We claim that for each ¢ = 1,--- , k, there is an a; € G such that a]"* # 1.
If that is not the case, then there is some i, 1 < ¢ < k, such that for all a € G,
a™ = 1. But that is impossible as m is the smallest such positive integer and
m; < m.

Let a1,--- ,ax € G be such that a;"* # 1, for each i, 1 <i < k. Let n; = %

and let b; = a;*, for all 4 = 1,--- k. We claim that the order of b; is pf",
i=1,--- k. )
We have bfil = (a?i)pfrl = a;n/pi # 1. But bfil = (a?i)p:i =a" =1.

The orders of b;’s are pairwise relatively prime. We have already proved that
in a commutative group if the order of two elements a and b are coprime, them
the order of ab is the product of their individual orders.

So the order of Hle bi is p5* - - ppk =m.

Let the size of G is m.

G is cyclic: there is an element a € G such that < a >= G. So the order of a
is m and m is the exponent.
m is the exponent: there is an element whose order is m. So G is cyclic. QED.

Definition 2: Let R be a commutative ring with identity. An element a € R is
called a divisor of an element b € R if there is a ¢ such that ac = b. A unit of
R is a divisor of the identity of R. The set of units of R is denoted by R*.

If @ € R is a unit, there is b € R such that ab = 1. If there is another ¢ € R
such that ac = 1, then

c=c-1=c-(ab)=(a-¢)-b=1-b=0b.



We call b the inverse of a and denote it by a=!.

Example 2. Two units of Z are £1. All non-zero elements are units of Q.
Proposition 3. If R is a commutative ring with identity, then R* is a com-
mutative group under multiplication.

Proof: It is clear that 1 € R*. If a,b € R*, then there are ¢,d € R such that
ac =1 =0bd. So (ab) - (cd) = (ac)-(bd) = 1-1 = 1. So R* is closed under
multiplication.

Asac=1, we have c=a"! € R*. QED.

If R is non-trivial and R\ {0} = R*, then R is a field e.g. Q, R, Z,, for any
prime p are fields.
Definition 3: If R is a non-trivial commutative ring with identity and does not
have any zero divisor, then it is an integral domain.
Proposition 4. If D is an integral domain and G is a finite subgroup of D*,
then G is cyclic.

Proof: Let the exponent of G be m < |G|. We know that for alla € G, a™ = 1.
So the elements of G are the roots of X™ — 1 = 0 in D[X]. But it is known
that a polynomial of degree m over an integral domain has at most m roots. So
m = |G| and by the proposition (1.1) G is cyclic. QED.

Corollary 5. For every prime Z, is a field and Z, is finite and cyclic.

1.2 7z, is Cyclic for Odd Prime p

We prove the following propositions.
Proposition 6. For every positive integer n and e, if a = b(mod n¢), then
a™ = b"(mod nett).

Proof: We have a = b+ kn®, so
a® = (b+kne)" =" + (") o kne + zn: ")t (kne) = o™ (mod ne+l).
1 par i

QED.

Proposition 7. Let p be a prime and e be a positive integer such that p® > 2.
If a = 1+ p¢(mod p¢*t1), then a? =1 + p°Tt(mod p*+2?).

Proof: Suppose a = 1 + p*(mod p®*!). By the previous lemma (1.2), a? =
(14 p°)P(mod p°*2). But then

p—1
p .
1 e _ 1 € ei ep.
(1+p%) +pp+2(z.)p +p

=2

But we already know that p| (f), when p is a prime and 0 < i < p. So each term
of the sum is divisible by p?¢*!. But then e +2 < 2e + 1 for all e > 1. So each
term of the sum is divisible by p°t2. As p® > 2, it is not possible that p = 2
and e = 1 ie. ep —e > 2. So p is divisible by p+2. QED.

Proposition 8. If p is an odd prime and e is a positive integer, then Z;e is
cyclic.

Proof: We have already proved that Z; is cyclic. So we take e > 1. Let
x € Z and [z], generates Zj i.e. the order of z is p — 1 (P! = 1(mod p). Let
the multiplicative order of x in Z;e be m ie. 2™ = 1(mod p¢). So we have
2™ = 1(mod p). This implies that (p — 1) divides m and we conclude that
(zm/P=1)P=1 = 2™ = 1(mod p®) i.e. the multiplicative order of ™/P~1 in Z,.

is p — 1. If we can find an y so that the multiplicative order of y in Z;e is pe~1,

then we have the element z™/?~! . whose order is p¢~(p — 1) in L.



We take y = 1+ p. All elements of Z,. can be encoded as a e-digit number
in radix-p. The representation for y is 0---011 = p* + p°.
According to propositon (1.2), y = 1 + p implies y? = 1 + p*(mod p3). So
the value of y? mod p? is “101” in radix-p numeral. Clearly these three digits
remain the same for e-digit representation of y? mod p®. In the same way we
have the following values:

(&

——
ymod p¢ = 0---011
—_—
y? mod p° = @c_1---a3l01, y* =1+ p*(mod p*)
2 —_— :
y? mod p® = be_1---b31001, ypd =1+ p*(mod p*)
y? " mod p¢ = 10---001, y* =1+ p° " (mod p*)
- ——
y?  mod p® = 00---001, y» =1+ p°(mod p°)
So the order of y is p¢~ 1. QED.

Example 3. We know that ZZ is a cyclic group with generator 2. The generator
for Zs2 is 2 x (5 4+ 1) = 12. Note that the multiplicative order of 2 in Zs2 is
4 (2,4,3,1) and that of 6 is 5 (6,11,16,21,1). As the ged(4,5) = 1, the mul-
tiplicative order of 6 x 2 = 12 in Zs2 is 5 x4 = ¢(25). So 12 is a generator of Zszo.

1.3 Generator and Discrete Log in Z,

We know that for any prime p, Z; is a cyclic group. So there are ¢(p — 1)
generators of Z,. If g is a generator of Z, and y € Z;, then there is an integer
z,0 <z < p—1 such that g = y. The integer x is called the discrete logarithm
of y to the base g in Z,, log, y = z.

So we have two important computational problems - finding a generator g of
Z, and given a g and y, finding the discrete log . If g € G is not a generator,
but generates a subgroup G of Z;, such that the order of < ¢ >= G is q. We
know that glp — 1. In this case if y € G, then g* = y or log,y = z, where

0<z<q.

1.3.1 Generator for Z;

There is no known efficient algorithm for finding generator of Z;. Even if the
prime factorisation of p — 1 is given, we have probabilistic algorithm. The input
to the algorithm is an odd prime p and the prime factorisation of p — 1. The
output is a generator of Z,. Let

k
p—1=]]»"
i=1

Our algorithm relies on the following proposition.
Proposition 9. G is a commutative group a?d a € G is such that for some
prime p and an integer e > 1, a?° =1, but a?"  # 1, then the order of a is p°.

Proof: Let m be the order of a. So m|p®i.e. m =pf, 0< f <e. If f <e, then

e—1 e—f—1

a?” = (a? )T =1 =1 - is a contradiction. QED.
In the randomised algorithm we pick up (at random) ay, - - ,ax so that the
order of g; = az(-pfl)/p"', is pi*, for i = 1,--- ,k. It is known that the order of

k . k )
Hi:l gi 18 Hi:1 pfl =p-—1



fori+ 1tok
repeat
a <+ rand{1,---p—1}
b « aP—1)/p:i
until b # 1
gi — a(P_l)/Pfi
k
g < Hi:l 8i
return g

We establish the correctness of the algorithm. Let ¢; = (p — 1)/p;*. So

ei— ei—1 oi . )
1#£b=(a%)P: f o g, but g7 =aP~! =1. So the order of g; is pS*.
As gcd(pfi,p;j) =1,1<1i<j <k, the order of g is p — 1. The algorithm if
terminates gives correct output.
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