
Computer Science & Engineering Department
IIT Kharagpur

Computational Number Theory: CS60094
Lecture I

Instructor: Goutam Biswas Spring Semester 2014-2015

1 Computation with Large Integers

1.1 Introduction

Most imperative programming languages support integers as a built-in type. But they are of
fixed size, restricted by the machine architecture or the language specification. Typical size
of a C language integer is 32-bit or 64-bit. The corresponding ranges of integers are −231 to
231 − 1 for a 32-bit representation, and −263 to 263 − 1 for a 64-bit representation1. But in
number theoretic applications it is necessary to deal with integers of much larger size with
full precision2.

Languages like C provides support for multi-precision integers in the form of library e.g.
GNU Multiple Precision Arithmetic Library (GMP)([GMP]). There are programming lan-
guages like Python that directly support arithmetic over multi-precision integers. Also there
are softwares e.g. PARI/gp ([PARI/gp]) that supports programming in number theory and
other algebraic application.

In this lecture we shall discuss basic data structure for multi-precision positive integers
and arithmetic operations on them.

1.2 Representation of Multi-Precision Integer

A multi-precision integer is represented using positional number system, as a vector of digits
in some suitable base B. The sign may be indicated by a flag. Let a ∈ Z, we write

a = ±
k−1
∑

i=0

aiB
i ≡ ±(ak−1ak−2 · · · a1a0),

Where 0 ≤ ai < B, for i = 0, 1, · · · , k − 1. For uniqueness ak−1 6= 0. It may be also necessary
to store the number of digits. For most of our discussion we shall only consider unsigned
integers.

The base B is often chosen to be a power of 2 to get the benefit of the binary world of a
computer. As an example, we may choose the base B = 216 = 65536. A digit of this radix
can be stored in a C program as an element in an array of type unsigned int (size 32-bit).
The range of digits with this base is 0 to 216 − 1. The maximum value of the product of two
digits, including a carry, can be (B− 1)2+(B− 2) = B2−B− 1. With B = 65536, the value
is 4294901759 < 232 − 1 = 4294967295. In this scheme the space utilization is not good, as
half of the 32-bit word is not used. The number of elementary digit operations are also more
due to larger number of digits compared to base B = 232. This increases the constants of
time complexity of different operations e.g. addition, multiplication etc.

1If we use unsigned integer the corresponding ranges are 0 to 232 − 1 and 0 to 264 − 1 respectively.
2Due to the loss of precision, floating point numbers are ruled out.

1

Example 1. Decimal number 123456789 in base 216 is (1883, 52501)216 , where the digits of
are coded in decimal. The place value of 1883 is 1883 × 216 = 12340428810 .
Similarly 2100 = 126765060022822940149670320537610 and its base-216 representation is
(16, 0, 0, 0, 0, 0, 0)216 .

We can do better if we have support for 64-bit (unsigned long long int) operations
(available in GCC). We may choose b = 232, so there is no loss of bits. But then we have to
use “unsigned long long int” operations which may turn out to be slower.
Example 2. The decimal number 123456789123456789 represented in base-216 is
(438, 39755, 44240, 24341) and if represented in base-232 is (28744523, 2899336981). In terms
of memory usage, base-216 uses 16-bytes and base-232 uses 8-bytes. Two add two such num-
bers, the first one requires four additions and the second one requires two.

We may also take the base as a power of 10. If B = 104 (109 is less than 232), every word
can store 0 to 9999 and the product will not exceed 232 − 1. In this case the space utilisation
is bad but the I/O will be simple. Cost of operation on every digit will be more.

A sample C data type may be as follows:

struct uli {

unsigned int digits[DIG_LEN], sDigCount ;

};

typedef struct uli uli; // unsigned large integer

uli n;

If we want a signed integer, we may use a sign flag, or we may store both the sign and the
number of digits in the sDigCount field of the record3. If the sign is s ∈ {0(+), 1(−)} and the
number of digits are n+1, dn · · · d0, we store s×231+n+1 in sDigCount. So 0 < n+1 < 231.
The scheme can be used to accommodate 231 − 1 = 2147483647 digits of base 216.

In the digit array, the ith location stores the ith digit and its place value is n.digits[i]∗Bi.
Example 3. The representation for −123456789123456789 in our scheme is

index→ 3 2 1 0

digits 438 39755 44240 24341

sDigCount 1× 231 + 4 = 2147483649

We may also store a base-231 number in a 32-bit word. In this case the sum of two
digits will remain within 32-bit and the carry can be detected from b31. But the result of
multiplication will exceed 32-bits and is to be handled carefully.
Example 4. The base 231 representation of a = 123456789123456789 is (57489047, 751853333)
and the representation of b = 98765432109876543210 is (21, 894081649, 1697021674).
When we add them, 751853333 + 1697021674 = 2448875007, the sum is greater than 231 but
less than 232. We get the digit of the sum as 2448875007 mod 231 = 301391359 and the
carry as ⌊2448875007231 ⌋ = 1.

But in case of multiplication, 751853333 ∗ 1697021674 = 1275911401770139442 is larger
than 232 − 1 and we have to use a double-word arithmetic.

1.3 Basic Operations on Multi-Precision Integers

We shall now consider how to input and output multi-precision integers and how to perform
basic arithmetic operations on them.

3Or may be as the first element of the array itself.

2

• I/O functions - readuli(), printuli(),

• Arithmetic operations - adduli(), subuli(), multuli(), divuli() etc.

• Relational operations - eq(), le() etc.

• Other functions e.g. constructors - makeuli() etc.

It is essential to input data and print the result. So first of all we discuss the I/O functions.
A long integer input comes as a long string of decimal digits, a stream of ASCII or similar
code. It is necessary to convert it to internal representation (to a suitable base). So the input:
”123456789123456789” is to be converted to (438, 39755, 44240, 24341)216 .

Let the input be a string of encoded decimal digits from the most significant side: dn−1 · · · di · · · d0.
Assume that we have already converted and stored the value of the digits dn−1 · · · di as a base-
B numeral Dm−1 · · ·Dj. Let the value of the partial input be Ni. We read the next decimal
digit di−1. The value corresponding to dn−1 · · · didi−1 is Ni−1 = 10Ni + di−1 in base-B. So
we multiply the representation of Ni in base-B by ten and add the base-B equivalent of the
digit di−1. It essentially calls for a multiplication and addition functions in base-B.

Ni =

{

0 if i = m,
10Ni+1 + di 0 ≤ i < n.

We may consume more than one decimal digits at a time. If we consume two digits at a
time, we have Ni = 100Ni+2 + 10di+1 + di.
Example 5. Our input is “123456789123456789”. Let the base be 216 = 65536. We start
with (0).

Digit Consumed Value

− (0)
1 10 × (0) + 1 = (1)
2 10 × (1) + 2 = (12)
3 10 × (12) + 3 = (123)
4 10 × (123) + 4 = (1234)
5 10 × (1234) + 5 = (12345)
6 10 × (12345) + 6 = (1, 57920)
7 10 × (1, 57920) + 7 = (18, 54919)
· · · · · ·

Now we consider how to print multi-precision integer. Let N = Dm−1 · · ·D0 be a m-digit
base-B numeral we wish to print. Naturally we wish to print it as a decimal number. The
essential idea is to convert N to a base-10 or power of 10 numeral.

Let us assume that we already have computed base-10 numeral corresponding to Ni =
Dm−1 · · ·Di. When the next digit Di−1 is included, the value of the number is Ni−1 =
Ni × B +Di−1. So we have to represent B and Di−1 in base-10 and perform multiplication
and addition. We start with Nm = 0 and compute N0.
Example 6. Consider the base 216 = 65536 numeral n = (438, 39755, 44240, 24341). We have

N0 = (0),

N1 = 0× 65536 + 438 = (4, 3, 8),

N2 = N1 × 65536 + 39755 = (2, 8, 7, 4, 4, 5, 2, 3),

3

N3 = N2 × 65536 + 44240 = (1, 8, 8, 3, 8, 0, 1, 1, 0, 3, 5, 6, 8),

N4 = N3 × 65536 + 24341 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9).

In fact in the first step, 65536 is to be taken as (6, 5, 5, 3, 6) and 438 is taken as (4, 3, 8), and
so on.

We can make it more efficient by taking the base for printing as a power of 10. It should
be slightly smaller than the base of our multi-precision numeral. For example, if the base of
the multi-precision numeral is B = 216, we may take our print numeral base to be 104. In
this case we do the arithmetic in base 104. In this connection it is necessary to remember
that each base-104 digit must have four decimal digits while printing.
Example 7. We start with the decimal number n10 = 10200300040000500000. The base-216

representation is (36238, 48855, 50849, 61728). We choose our output base to be 10000. So
the internal base is (6, 5536) in the output base. We compute as follows:

N0 = (0),

N1 = N0 × (6, 5536) + (3, 6238) = (3, 6238),

N2 = N1 × (6, 5536) + (4, 8855) = (23, 7494, 2423),

N3 = N2 × (6, 5536) + (5, 0849) = (155, 6442, 2668, 4577),

N4 = N3 × (6, 5536) + (6, 1728) = (1020, 0300, 0400, 0050, 0000).

During the computation we cannot ignore ‘00’ of ‘0050’ etc.

1.3.1 Addition and Multiplication

Algorithm for addition is simple. Consider base-B data a = (ak−1, ak−2, · · · , a1, a0) and
b = (bl−1, bl−2, · · · , b1, b0). Without any loss of generality we can assume that k ≥ l ≥ 1 (if
otherwise, we may exchange a and b). We take bk−1, · · · , bl ← 0. The sum c = a+ b, where
c = (ck, ck−1, ck−2, · · · , c1, c0). The value of ck may be 0 or 1.

add(a,b)
cy ← 0
for i ← 0 to l − 1

val ← ai + bi + cy
ci ← val mod B
cy ← ⌊val/B⌋

for i ← l to k − 1
val ← ai + cy
ci ← val mod B
cy ← ⌊val/B⌋

if cy = 1 then

digitsC ← k + 1
ck ← 1

else digitsC ← k
return c

We assume that addition, mod , and division of two words can be performed in O(1) time
cost. So the running time of this algorithm is O(k), where k is the word size of a multi-
precision data.

4

Note that on a 32-bit machine if the base is B = 232, the value of ai + bi + ci may exceed
B and will generate a carry, ci+1. This can be detected by comparing the operands and the
sum under different conditions of incoming carry.
Our job is to detect whether the carry out ci+1 is 0 or 1. We consider two cases, carry-in ci
is 0 or 1. We know that 0 ≤ ai, bi < B and ai + bi + ci = B × ci+1 + si, where ci+1 ∈ {0, 1}
and 0 ≤ si < B.
If ci = 0 and the carry out is 0, then ai + bi = si. So si ≥ ai, bi. But if the carry out is 1,
then ai + bi = B + si. So si < ai, bi as B > ai, bi.
If ci = 1 and the carry out is 0, then ai + bi + 1 = si. So si > ai, bi. If the carry out is 1,
ai + bi + 1 = B + si i.e. ai + bi = (B − 1) + si. So si ≤ ai, bi. This gives an algorithm to
detect carry. The advantage of base B = 232 is that the ‘mod’ operation can be performed
at a lower cost.
Example 8. Let the base B = 216, following table shows different conditions:

ci ai bi si condition ci+1

0 37940 40213 12617 si < ai, bi 1
0 37940 12111 50051 si > ai, bi 0
0 37940 0 37940 s1 = ai, bi = 0 0
1 37940 12111 50052 si > ai, bi 0
1 37940 65535 37940 si = ai, bi = 65535 1
1 37940 40213 12618 si < ai, bi 1

Exercise: 1 Give an algorithm for performing subtraction.
Our next algorithm is for multiplication of two unsigned numbers. The inputs are a =

(ak−1, ak−2, · · · , a1, a0) and b = (bl−1, bl−2, · · · , b1, b0), where k, l ≥ 1. We take a as the
multiplier. The output is c = (ck+l−1, ck+l−2, · · · , c1, c0). The time complexity is O(kl).

mult(a,b)
for i← 0 to k + l − 1

ci ← 0
for i← 0 to k − 1

cy ← 0
for j ← 0 to l − 1

val← ai × bj + ci+j + cy
ci+j ← val mod b
cy ← ⌊val/b⌋

ci+l ← cy
if ck+l−1 > 0 then digitsC ← digitsA + digitsB
else digitsC ← digitsA + digitsB − 1
return c

Example 9. We start with a = 9876556789 = (2, 19632, 19445) and b = 12345678912345678910 =
(438, 39755, 44240, 24341)65536 . So the product can have at most 7-digits. We initialise

5

c = (0, 0, 0, 0, 0, 0, 0). First we multiply 19445 × (438, 39755, 44240, 24341):

a0 = 19445

j bj cyin ci+j val ci+j cyout
0 24341 0 0 473310745 c0 = 9753 7222
1 44240 7222 0 860254022 c1 = 28486 13126
2 39755 13126 0 773049101 c2 = 51981 11795
3 438 11795 0 8528705 c3 = 9025 130

So we have the partial product c = (0, 0, 130, 9025, 51981, 28486, 9753). Similarly,

a1 = 19632

j bj cyin ci+j val ci+j cyout
0 24341 0 28486 477890998 c1 = 2486 7292
1 44240 7292 51981 868578953 c2 = 30345 13253
2 39755 13253 9025 780492438 c3 = 24214 11909
3 438 11909 130 8610855 c4 = 25639 131

The second partial product c = (0, 131, 25639, 24214, 30345, 2486, 9753). Finally,

a1 = 2

j bj cyin ci+j val ci+j cyout
0 24341 0 30345 79027 c2 = 13491 1
1 44240 1 24214 112695 c3 = 47159 1
2 39755 1 25639 105150 c4 = 39614 1
3 438 1 131 1008 c5 = 1008 0

The final product is c = (0, 1008, 39614, 47159, 13491, 2486, 9753). This is equivalent to
1219327988765418508546090521 in decimal.

1.3.2 Karatsuba-Ofman Algorithm

This school-book algorithm mentioned earlier takes O(n2) basic operations (multiplication of
two digits, addition with carry; division by constant etc). The question is whether anything
better can be done. It seems Andrey Kolmogorov conjectured (1952) that this algorithm is
asymptotically optimal. The conjecture was presented in a seminar at the Moscow State Uni-
versity in 1960. Within a week a 23-year old student Anatolii Alexeevitch Karatsuba found an
algorithm that can multiply two n-digit numbers using Θ(nlog2 3) single digit multiplications
([AKYO] [AD]).

We give an example of the algorithm with 2-digit and 4-digit numbers in radix-10.
Example 10. Let m,n be two 2-digit positive integers. So m = 10a + b and n = 10c + d,
where a, b, c, d are decimal digits. The product is

m× n = (10a + b)× (10c + d) = 100(a · c) + 10(a · d+ b · c) + b · d.

It requires four multiplications of single-digit numbers4, and three additions. Karatsuba’s
trick was to reduce the number of multiplication to three. He computed a · d + b · c as

4Multiplication by constant can be converted to low cost shift operations.

6

a · c+ b · d− (b− a)(d− c). He computed the following products.

p = a · c,
q = b · d,
r = (b− a)(d− c),

m× n = 100p + 10(p + q − r) + q

In this case it is necessary to perform subtraction operation. So it is necessary to store
signed numbers. If m = 85 and n = 69, then we have p = 8 × 6 = 48, q = 5 × 9 = 45,
r = (5− 8)(9− 6) = −9. So the product is 100× 48+10× (48+ 45− (−9))+ 45 = 5865. The
total number of operations are three single-digit multiplications, three single digit subtractions
and three additions.

A 4-digit number e.g. 6592 can be written as 65 × 102 + 92. Let m and n be two 4-digit
numbers such that m = a × 102 + b and n = c × 102 + d, where a, b, c, d are each two-digit
numbers. We again compute

p = a · c,
q = b · d,
r = (b− a)(d− c),

m× n = 104 · p+ 102 · (p+ q − r) + q

Example 11. Let m = 5987 = 102 × 59 + 87 and n = 7823 = 102 × 78 + 23. So p =
59 × 78 = 4602, q = 87 × 23 = 2001, r = (87 − 59)(23 − 78) = −1540. So the product is
104 × 4602 + 102 × (4602 + 2001 + 1540) + 2001 = 46836301.

In this case we have used 3×3 = 9 single-digit multiplications to compute the productm×n
(compute p, q and r). A school-book multiplication algorithm would have taken 16 single-
digit multiplications. If the number of digits of the multiplier and the multiplicand are same
and a power of 2, i.e. n = 2k, then the Karatsuba algorithm will take three multiplications
of 2k−1 digits. If we apply the algorithm recursively, we get 3k single-digit multiplications.
Whereas the school-book algorithm performs it with n2 = 22k = 4k multiplications. Let
3k = 3log2 n = x. So we have log2 n × log2 3 = log2 x, implies that log2 x = log2 n

log2 3. So,
3k = x = nlog2 3 = n1.58 single digit multiplications.

It is necessary to take the addition and subtraction operations for exact analysis. It seems
the school-book multiplication is faster than Karatsuba when the number of digits are small.
But with a proper representation of multi-precision integers, Karatsuba is faster for larger
numbers.

1.3.3 Toom-Cook Algorithm

This is a modification and generalisation of Karatsuba’s method. First we review the Karatsuba-
Ofman algorithm in a slightly different way. Let a and b two n digit numbers in base-B number
system. We take x = B⌈n/2⌉ and express a = a1x + a0 and b = b1x + b0. We treat x as a
formal variable, so we have the polynomials a(x) = a1x+a0 and b(x) = b1x+b0. The product
c(x) = a(x)b(x) = c2x

2 + c1x+ c0, where c2 = a1b1, c1 = (a1b0 + a0b1), and c0 = a0b0.
The coefficients of c(x), a quadratic polynomial, can be uniquely determined by evaluating

it at three points. If we choose the points to be -1, 0 and ∞5, we have c(∞) = a(∞)b(∞) =

5If p(x) is a polynomial of degree k, then by p(∞) we mean limx→∞

p(x)

xk
. This gives the coefficient of xk.

7

a1b1, c(0) = a(0)b(0) = a0b0, and c(−1) = a(−1)b(−1) = (a0− a1)(b0− b1). This gives us the
coefficients of products in Karatsuba-Ofman algorithm.
Example 12. Let a = 349 and b = 732, n = 3, in decimal system. So 10⌈

n
2
⌉ = 102 = 100. So

a(x) = 3x+ 49 and b(x) = 7x+32 and c(x) = (3× 7)x2 + (3× 32 + 49× 7)x+ 49× 32. Now
c(∞) = a(∞)b(∞) = 3×7, c(0) = a(0)b(0) = 49×32, c(−1) = a(−1)b(−1) = (49−3)(32−7) =
46×25 = 1150. So 104× (3×7)+102 × (21+1568−1150)+1568 = 210000+43900+1568 =
255468.

Toom-Cook algorithm uses higher order polynomial to represent the numbers. We consider
the special case of quadratic polynomial. The corresponding algorithm is known as Toom-3
algorithm.

Let a and b be two n digit base-B numbers. We take x = B⌈n/3⌉. Corresponding polyno-
mials are

a(x) = a2x
2 + a1x+ a0,

b(x) = b2x
2 + b1x+ b0;

and the product a(x)b(x) = c(x) = c4x
4 + c3x

3 + c2x
2 + c1x+ c0, where the coefficients are

c4 = a2b2,

c3 = a2b1 + a1b2,

c2 = a2b0 + a0b2 + a1b1,

c1 = a1b0 + a0b1,

c0 = a0b0.

A direct computation of five coefficients require 9 multiplications (in radix-xB⌈n/3⌉) which is
same as the number of multiplications i by the school book method.

But we can improve this with a suitable choice of five evaluation points. Our choices are
−2,−1, 0, 1,∞. And we have

c(∞) = c4 = a2b2,
c(1) = c4 + c3 + c2 + c1 + c0 = (a2 + a1 + a0)(b2 + b1 + b0),
c(−1) = c4 − c3 + c2 − c1 + c0 = (a2 − a1 + a0)(b2 − b1 + b0),
c(−2) = 16c4 − 8c3 + 4c2 − 2c1 + c0 = (4a2 − 2a1 + a0)(4b2 − 2b1 + b0),
c(0) = c0 = a0b0.

In this case we use five multiplications. Using the matrix notation we get














c(∞)
c(1)
c(−1)
c(−2)
c(0)















=















1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
16 −8 4 −2 1
0 0 0 0 1















·















c4
c3
c2
c1
c0















The coefficient matrix is fixed and has inverse. So we have














c4
c3
c2
c1
c0















=















1 0 0 0 0
2 1/6 1/2 −1/6 −1/2
−1 1/2 1/2 0 −1
−2 1/3 −1 1/6 1/2
0 0 0 0 1















·















c(∞)
c(1)
c(−1)
c(−2)
c(0)















.

8

So we have the following solution for the coefficients.

c4 = c(∞),

c3 =
1

6
(12c(∞) + c(1) + 3c(−1)− c(−2) − 3c(0)),

c2 =
1

2
(−2c(∞) + c(1) + c(−1)− 2c(0),

c1 =
1

6
(−12c(∞) + 2c(1) − 6c(−1) + c(−2) + 3c(0),

c0 = c(0).

The time complexity for multiplying ⌈n/3⌉ digit integers by small constants like 2, 3, 12 is
of O(n). The main contribution to time complexity comes from five multiplications of ⌈n/3⌉
digit integers.

These ⌈n/3⌉ multiplications can be done recursively in a similar manner until we come to
single digits. To simplify our analysis of time complexity we assume that n, the number of
digits, is 3k. So in the school-book method we need n2 = 9k single digit multiplication. But
in Toom-3 we require 5k = nlog3 5 = n1.465 multiplications.
Example 13. Let a = 123456789 and b = 87654321 with the base B = 103. So the actual
data is a = (12, 345, 678) and b = (87, 654, 321). As the number of digits n = 3, x =
B3/3 = B = 103. We write a(x) = 12x2 + 345x + 678 and b(x) = 87x2 + 654x + 321
i.e. a2 = 12, a1 = 345, a0 = 678 and b2 = 87, b1 = 654, b0 = 321. The product is c(x) =
c4x

4 + c3x
3 + c2x

2 + c1x+ c− 0. The values of

c(∞) = a2b2 = 12× 87 = (1, 044),

c(1) = (a2 + a1 + a0)(b2 + b1 + b0) = (12 + 345 + 678)(87 + 654 + 321) = (1, 099, 170),

c(−1) = (a2 − a1 + a0)((b2 − b1 + b0) = (12 − 345 + 678)(87 − 654 + 321) = −(84, 870),
c(−2) = (4a2 − 2a1 + a0)(4b2 − 2b1 + b0) = (4× 12− 2× 345 + 678)(4 × 87− 2× 654 + 321)

= −(23, 004),
c(0) = a− 0b0 = 678 × 321 = (217, 638).

Now we find the values of the coefficients of c(x).

c4 = c(∞) = (1, 044),

c3 =
1

6
[12c(∞) + c(1) + 3c(−1) − c(−2) − 3c(0)]

=
1

6
[12× (1, 044) + (1, 099, 170) + 3(84, 870) + (23, 004) − 3× (217, 638)]

=
1

6
× (227, 178) = (37, 863),

c2 =
1

2
[−2c(∞) + c(1) + c(−1)− 2c(0)]

=
1

2
[−2× (1, 044) + (1, 099, 170) − (84, 870) − 2× (217, 638)

=
1

2
× (576, 936) = (288, 468),

c1 =
1

6
[−12c(∞) + 2c(1) − 6c(−1) + c(−2) + 3c(0)]

9

=
1

6
[−12× (1, 044) + 2× (1, 099, 170) + 6× (84, 870) − (23, 004) + 3× (217, 638)]

=
1

6
× (3, 324, 942) = ((554, 157)],

c0 = c(0) = (217, 638)

So the product is
c4x

4 1 044 +
+ c3x

3 037 863 +
+ c2x

2 288 468 +
+ c1x 554 157 +
+ c0 217 638 =

= c 1 082 152 022 347 638

1.3.4 Schönhage-Strassen Algorithm

The best known multiplication algorithm (asymptotically) is based on Fast Fourier Transform
(FFT) algorithm of Discrete Fourier Transform (DFT). Here the multiplication is viewed as
convolution. We shall present a simplified version of the algorithm [AD]. The running time
of the algorithm is O(n log n log log n).

We start with the definition of DFT over complex field. Let our signal be a finite sequence
a = (ai) of length n, where i = 0, 1, · · · , n− 16. An element ai may be viewed as a coefficient
of the polynomial a(x) = an−1x

n−1 + · · ·+ a1x+ a0.

In general ai’s are complex numbers. Let ωn be the primitive nth root of unity i.e. ωn = ej
2π
n .

TheDiscrete Fourier Transform (DFT) of a, DFT (a), is the signal A = (Al), l = 0, 1, · · · , n−1,
where

Al =
n−1
∑

k=0

akω
kl
n .

Essentially Al is a(ω
l
n).

The signal A may also be viewed as a polynomial A(x) = A0 + A1x + · · · + An−1x
n−1. The

Inverse Discrete Fourier Transform of A, DFT−1(A) gives a. The DFT−1(A) is defined as,

al =
1

n

n−1
∑

k=0

Akω
−kl
n , l = 0, 1, · · · , n− 1.

So al = A(ω−l
n)
n , and we claim that a = DFT−1(DFT (a)). The time complexity of this

method of DFT computation is Θ(n2). Subsequently we shall show a better method for this
computation. It is known as Fast Fourier Transform (FFT) algorithm.
Example 14. Let a(x) = x3 +2x2 +3x+4 : (1, 2, 3, 4). So a0 = 1, a1 = 2, a2 = 3, a3 = 4. The

primitive 4th-root of 1 is ω4 = ei
2π
4 = cos π

2 + i sin π
2 = i =

√
−1.

So ω0
4 = 1, ω1

4 = ω4 = i, ω2
4 = −1 and ω3

4 = −i. The components of the DFT (a) vector is

6We shall not bother much about the notion of “signal”. These may be a sequence of digitized audio signal
and in communication engineering people are interested about correlation between the signal and its sinusoidal
frequency components.

10

(A3, A2, A1, A0), where

A0 = a(ω0
4) = 1 + 2 + 3 + 4 = 10

A1 = a(ω1
4) = i3 + 2i2 + 3i+ 4 = 2 + 2i

A2 = a(ω2
4) = (−1)3 + 2(−1)2 + 3(−1) + 4 = 2

A3 = a(ω1
4) = (−i)3 + 2(−i)2 + 3(−i) + 4 = 2− 2i

We use the polynomial A(x) : (2 − 2i)x3 + 2x2 + (2 + 2i)x + 10 to evaluate DFT−1(A). We
have (ω4)

−1 = 1
i = −i.

a0 = 1
4A((−i)0) = 1

4A(1) = 1
4 [(2 − 2i) + 2 + (2 + 2i) + 10] = 4

a1 = 1
4A((−i)1) = 1

4A(−i) = 1
4 [(2 − 2i)(−i)3 + 2(−i)2 + (2 + 2i)(−i) + 10] = 3

a2 = 1
4A((−i)2) = 1

4A(−1) = 1
4 [(2− 2i)(−1)3 + 2(−1)2 + (2 + 2i)(−1) + 10] = 2

a3 = 1
4A((−i)3) = 1

4A(i) = 1
4 [(2− 2i)(i)3 + 2(i)2 + (2 + 2i)(i) + 10] = 1

It is important that we mathematically justify our claim. Let the polynomial a(x) = a0+
a1x+· · · , an−1x

n−1. We evaluate it at n different points x0, x1, · · · , xn−1 and the corresponding
values are y0 = a(x0), · · · , yn−1 = a(xn−1). This can be expressed as a n×n matrix equation.













1 x0 · · · xn−1
0

1 x1 · · · xn−1
1

...
...

...
...

1 xn−1 · · · xn−1
n−1

























a0
a1
...

an−1













=













y0
y1
...

yn−1













The coefficient matrix is known as Vandermonde matrix V (x0, x1, · · · , xn−1). It is known to
be invertible if xi 6= xj . The determinant is

∏

0≤i<j≤n−1(xj − xi). In DFT the Vandermonde

matrix is Vn(1, ωn, ω
2
n, · · · , ωn−1

n), where ωn is the primitive nth roots of unity.













1 ω0
n · · · (ω0

n)
n−1

1 ωn · · · (ωn)
n−1

...
...

...
...

1 ωn−1
n · · · (ωn−1

n)n−1

























a0
a1
...

an−1













=













y0
y1
...

yn−1













Vn is invertible, so a = V −1
n y.

Proposition 1. V −1
n [k, l] = ω−lk

n

n , k, l = 0, 1, · · · , n− 1.
We prove the following lemma used in the proof of the proposition.
Lemma 2. Let n, k be positive integers and n 6 |k.

n−1
∑

j=0

(ωk
n)

j = 0.

Proof:

n−1
∑

j=0

(ωk
n)

j

= (ωk
n)

0 + (ωk
n)

1 + · · · + (ωk
n)

n−1

11

=
(ωk

n)
n − 1

ωk
n − 1

=
(ωn

n)
k − 1

ωk
n − 1

=
1k − 1

ωk
n − 1

= 0.

If n|k, then ωk
n = 1, and the result does not hold. 2

Proof: (proposition) We assume V −1
n [k, l] = ω−lk

n

n , k, l = 0, 1, · · · , n − 1, and prove that
V −1
n Vn = In. We know that (V −1

n Vn)[p, q], the (p, q)th entry of V −1
n Vn, is the inner prod-

uct of the pth-row of V −1
n i.e. [1/n (ω−p

n)1/n · · · (ω−p
n)n−1/n], and the qth-column of Vn i.e.

[1 (ωq
n)

1 · · · (ωq
n)

n−1]T . So,

(V −1
n Vn)[p, q] =

ω
0·(q−p)
n

n
+

ω
1·(q−p)
n

n
+ · · ·+ ω

(n−1)·(q−p)
n

n
.

This sum is 1 if p = q, otherwise it is 0 by the previous lemma. Note that q−p is not divisible
by n as 0 ≤ p, q ≤ n− 1. So V −1

n Vn = In. 2

Our next job is to show how multiplication can be performed using DFT.
Let a and b be the multiplier and the multiplicand. Each of them has n digits in some base
B. We take N = 2n and pad both a and b with leading zeros (digits aN−1, bN−1, · · · , an, bn).
Now we have

a : aN−1B
N−1 + · · ·+ a1B + a0

b : bN−1B
N−1 + · · ·+ b1B + b0,

where ai = 0 = bi,
N
2 ≤ i < N . The reason for this zero-extension is that the product of two

n digit numbers can have 2n digits.
The cyclic convolution of two signals a : (aN−1, · · · , a1, a0) and b : (bN−1, · · · , b1, b0) is c :
(cN−1, · · · , c1, c0), where

ck =
∑

(i+j)≡k(mod N)

aibj , k = {0, 1, · · · , N − 1},

= (a0bk + a1bk−1 + · · · + akb0) + (ak+1bN−1 + ak+2bN−2 + · · · + aN−1bk+1),

= (a0bk + a1bk−1 + · · · + akb0),

=
∑

i+j=k

aibj , k = {0, 1, · · · , N − 1}.

The contribution of ak+1bN−1 + ak+2bN−2 + · · · + aN−1bk+1 is zero as i + j = k + N and
ai = 0 = bi,

N
2 ≤ i < N .

So the product

a× b =
N−1
∑

i=0

ciB
i.

We compute DFT (a) and DFT (b).

DFT (aN−1, · · · , a1, a0)⇒ (AN−1, · · · , A1, A0),

DFT (bN−1, · · · , b1, b0)⇒ (BN−1, · · · , B1, B0),

12

where Ak is a(x) evaluated at ωk
N , Bk is b(x) evaluated at ωk

N . Let DFT (cN−1, · · · , c1, c0)⇒
(CN−, · · · , C1, C0), where Ck is c(x) evaluated at ωk

N . So we have

Ck = c(ωk
N) = a(ωk

N) · b(ωk
N) = AkBk.

The product c = (cN−1, · · · , c1, c0) is obtained by DFT−1(CN−1, · · · , C1, C0).
Example 15. Let a = 123 and b = 456 (decimal numbers). The corresponding signals are

a : (0, 0, 0, 1, 2, 3) and b : (0, 0, 0, 4, 5, 6). The primitive 6th root of unity is

ω6 = ei
2π
6 = cos

π

3
+ i sin

π

3
=

1 +
√
3i

2
.

Different powers of ω6 are

ω0
6 ω1

6 ω2
6 ω3

6 ω4
6 ω5

6

1 1+
√
3i

2
−1+

√
3i

2 −1 −1−
√
3i

2
1−

√
3i

2

(ω−1
6)0 (ω−1

6)1 (ω−1
6)2 (ω−1

6)3 (ω−1
6)4 (ω−1

6)5

1 1−
√
3i

2
−1−

√
3i

2 −1 −1+
√
3i

2
1+

√
3i

2

The DFT (a) = A = (A0, A1, A2, A3, A4, A5), where Ak = a(ωk
6), k = 0, · · · , 5.

A0 = a(ω0
6) = 1 + 2 + 3 = 6

A1 = a(ω1
6) =

(

1+
√
3i

2

)2
+ 2

(

1+
√
3i

2

)

+ 3 =
(

7+3
√
3i

2

)

A2 = a(ω2
6) =

(

−1+
√
3i

2

)2
+ 2

(

−1+
√
3i

2

)

+ 3 =
(

3+
√
3i

2

)

A3 = a(ω3
6) = 1− 2 + 3 = 2

A4 = a(ω4
6) =

(

−1−
√
3i

2

)2
+ 2

(

−1−
√
3i

2

)

+ 3 =
(

3−
√
3i

2

)

A5 = a(ω5
6) =

(

1−
√
3i

2

)2
+ 2

(

1−
√
3i

2

)

+ 3 =
(

7−3
√
3i

2

)

Similarly we have

DFT (b) = B = (B0, B1, B2, B3, B4, B5) =

(

15,
13 + 9

√
3i

2
,
3 + 3

√
3i

2
, 5,

3− 3
√
3i

2
,
13− 9

√
3i

2

)

.

Let c = a× b. The

DFT (c)

= C

= DFT (a) ·DFT (b)

= (A5 ×B5, A4 ×B4, A3 ×B3, A2 ×B2, A1 ×B1, A0 ×B0)

=

(

5− 51
√
3i

2
,
3− 3

√
3i

2
, 10,

3 + 3
√
3i

2
,
5 + 51

√
3i

2
, 90

)

.

So,

C(x) =
5− 51

√
3i

2
x5 +

3− 3
√
3i

2
x4 + 10x3 +

3 + 3
√
3i

2
x2 +

5 + 51
√
3i

2
x+ 90.

13

Finally, c = DFT−1(C), where ck = 1
6C((ω−1

6)k).

c0 = 1
6C((ω−1

6)0) = 18

c1 = 1
6C((ω−1

6)1) = 27

c2 = 1
6C((ω−1

6)2) = 28

c3 = 1
6C((ω−1

6)3) = 13

c4 = 1
6C((ω−1

6)4) = 4

c5 = 1
6C((ω−1

6)5) = 0

So
a× b = 123× 456 = 18 + 270 + 2800 + 13000 + 40000 = 56088.

The Fast Fourier Transform (FFT) algorithm uses divide-and-conquer strategy, takes the
advantage of the properties of complex roots of 1, and computes DFT in Θ(n log n) time.
Let a(x) = a0 + a1x+ · · · + an−1x

n−1 be a polynomial where n is a power of 2. We express
it as a(x) = a(e)(x2) + xa(o)(x2), where

a(e)(x) = a0 + a2x+ · · · + an−2x
n
2
−1, a(o)(x) = a1 + a3x+ · · · + an−1x

n
2
−1.

The evaluation of a(x) at ω0
n, ω

1
n, · · · , ωn−1

n is equivalent to the evaluation of a(o)(x) and a(e)(x)
at (ω0

n)
2, (ω1

n)
2, · · · , (ωn−1

n)2.
Example 16. Let a(x) = 4+3x+2x2+x3 (1.3.4), so we have a(o)(x) = 3+x and a(e)(x) = 4+2x.

The components of DFT (a) using a(o)(x) and a(e)(x) are, are,

A0 = a(ω0
4) = a(e)((ω0

4)
2) + ω0

4a
(o)((ω0

4)
2) = (4 + 2) + 1 · (3 + 1) = 10

A1 = a(ω1
4) = a(e)((ω1

4)
2) + ω1

4a
(o)((ω1

4)
2) = (4 + 2(−1)) + i(3 + (−1)) = 2 + 2i

A2 = a(ω2
4) = a(e)((ω2

4)
2) + ω2

4a
(o)((ω2

4)
2) = (4 + 2) + (−1)(3 + 1) = 2

A3 = a(ω3
4) = a(e)((ω3

4)
2) + ω3

4a
(o)((ω3

4)
2) = (4− 2) + (−i)(3 − 1) = 2− 2i

Lemma 3. (Cancellation lemma) Let n, k, and d be integers such that n, k ≥ 0, d > 0. The
(dk)th power of the (dn)th root of 1 is same as the kth power of the nth root of 1.
Proof:

ωdk
dn = (ei

2π
dn)dk

= (ei
2π
n)k

= ωk
n.

2

Lemma 4. (Halving Lemma) If the positive integer n is even, then the square of n complex
nth-roots of 1 are the n

2 complex n
2
th-roots of 1.

Proof: We have (ω
k+n

2
n)2 = ω2k

n ωn
n = (ωk

n)
2, where k = 0, 1, · · · , n2 − 1. Again by the cancel-

lation lemma, (ωk
n)

2 = ωk
n
2
, where k = 0, 1, · · · , n2 − 1. So, (ω

k+n
2

n)2 = (ωk
n)

2 = ωk
n
2
, when n is

even and k = 0, 1, · · · , n2 − 1. 2

We know that the evaluation of a(x) at ω0
n, ω

1
n, · · · , ωn−1

n is equivalent to the evaluation of
a(e)(x2)+xa(o)(x2) at (ω0

n)
2, (ω1

n)
2, · · · , (ωn−1

n)2. But then the sequence (ω0
n)

2, (ω1
n)

2, · · · , (ωn−1
n)2

is the sequence of n
2 complex n

2
th-roots of 1 repeated twice.

14

We also have ω
k+n

2
n = ωk

n · ω
n
2
n = −ωk

n, where k = 0, 1, · · · , n2 . So finally we have Ak =

a(e)(ωk
n
2
) + ωk

na
(o)(ωk

n
2
) = DFT (a(e)) + ωk

nDFT (a(o)) and Ak+n
2
= a(e)(ωk

n
2
) − ωk

na
(o)(ωk

n
2
) =

DFT (a(e))− ωk
nDFT (a(o)), k = 0, 1, · · · , n2 − 1.

Example 17. We have

a(e)((ωk
4)

2) = a(e)(ωk
2), a(o)((ωk

4)
2) = a(o)(ωk

2),

a(e)((ωk+2
4)2) = a(e)(ωk

2), a(o)((ωk+2
4)2) = a(o)(ωk

2),

for k = 0, 1.
Again ωk+2

4 = ωk
4 · ω2

4 = −ωk
4 , for k = 0, 1. So,

A0 = a(e)(ω0
2) + ω0

4a
(o)(ωk

2) = 10

A1 = a(e)(ω1
2) + ω1

4a
(o)(ω1

2) = 2 + 2i

A2 = a(e)(ω0
2)− ω0

4a
(o)(ω0

2) = 2

A3 = a(e)(ω1
2)− ω1

4a
(o)(ω1

2) = 2− 2i.

Following is the recursive FFT algorithm [CLRS]. We take the length or the number of
coefficients of the polynomial n to be power of 2.

FFT(a)
n ← length(a)
if n = 1 return a

ωn ← ei
2π
n

ω ← 1

a(e) ← (a0, a2, · · · , an−2)

a(o) ← (a1, a3, · · · , an−1)

A(e) ← FFT (a(e))

A(o) ← FFT (a(o))
for k ← 0 to n/2 − 1

Ak ← A
(e)
k + ωA

(o)
k

Ak+n
2
← A

(e)
k − ωA

(o)
k

ω ← ωωn

return A

This FFT algorithm evaluates DFT in Θ(n log n) time. If the number of digits of a and b
are n, so that 2t−1 < n ≤ 2t, then for the purpose of multiplication we start with N = 2t+1

digits with proper padding of the most significant digits by zeros. The power of 2 is for the
ease of implementation of FFT. The multiplication by 2 is for the product.
Example 18. Let a = (12, 34) in base B = 100 i.e in decimal a = 1234. We compute DFT (a)
and also by FFT algorithm. We extend a to 4-digits (for multiplication) by putting zeros in
the two most significant digits. So, a = (0, 0, 12, 34) and a(x) = 12x+ 34.
Let DFT (a) = A = (A3, A2, A1, A0) i.e. A(x) = A3x

3 +A2x
2 +A1x+A0, where ω4 = i and

A0 = a(ω0
4) = 12 + 34 = 46

A1 = a(ω1
4) = 34 + 12i

A2 = a(ω2
4) = 34− 12 = 22

A3 = a(ω3
4) = 34− 12i

15

Now we use FFT algorithm to do the same calculation. After the first recursive call we have,

A0 = a(ω0
4) = a(e)((ω0

4)
2) + ω0

4a
(o)((ω0

4)
2) = a(e)(ω0

2) + ω0
4a

(o)(ω0
2) = A

(e)
0 + ω0

4A
(o)
0

A1 = a(ω1
4) = a(e)((ω1

4)
2) + ω1

4a
(o)((ω1

4)
2) = a(e)(ω1

2) + ω1
4a

(o)(ω1
2) = A

(e)
1 + ω1

4A
(o)
1

A2 = a(ω2
4) = a(e)((ω2

4)
2)− ω2

4a
(o)((ω2

4)
2) = a(e)(ω2

2) + ω0
4a

(o)(ω2
2) = A

(e)
0 − ω0

4A
(o)
0

A3 = a(ω3
4) = a(e)((ω3

4)
2) + ω3

4a
(o)((ω3

4)
2) = a(e)(ω1

2)− ω1
4a

(o)(ω1
2) = A

(e)
1 − ω1

4A
(o)
1

where a(e) = (0, 34) i.e. a(e)(x) = 34 and a(o) = (0, 12) i.e a(o)(x) = 12. So we have
a(e)(e) = (34), a(e)(o) = (0) and a(o)(e) = (12), a(o)(o) = (0).
These are base case and can be computed directly

A
(e)
0 = a(e)(ω0

2) = a(e)(e)(ω0
1) + ω0

2a
(e)(o)(ω0

1) = 34

A
(e)
1 = a(e)(ω1

2) = a(e)(e)(ω1
1)− ω0

2a
(e)(o)(ω1

1) = 34

A
(o)
0 = a(o)(ω0

2) = a(o)(e)(ω0
1) + ω0

2a
(o)(o)(ω0

1) = 12

A
(o)
1 = a(o)(ω1

2) = a(o)(e)(ω1
1)− ω0

2a
(o)(o)(ω1

1) = 12

Finally we get the values of

A0 = A
(e)
0 + ω0

4A
(o)
0 = 34 + 12 = 46

A1 = A
(e)
1 + ω1

4A
(o)
1 = 34 + 12i

A2 = A
(e)
0 − ω0

4A
(o)
0 = 34− 12 = 22

A3 = A
(e)
1 − ω1

4A
(o)
1 = 34− 12i

So we have DFT (a) = FFT (a) = A = (34− 12i, 22, 34 + 12i, 46).
If we take another number b = (0, 0, 56, 78), then in the similar way we get DFT (b) =
FFT (b) = B = (78− 56i, 22, 78 + 56i, 134). If we now take the inner product of A and B we
get
A · B = C = (1980 − 2840i, 484, 1980 + 2840i, 6164).
Now we run the FFT algorithm with ω−1

n . We know that c = (c3, c2, c1, c0) = DFT−1(C). A
direct computation shows that c = (0, 672, 2840, 2652) in base 100. This gives us a product
in decimal as a× b = 6720000 + 284000 + 2652 = 7006652. Now we apply FFT algorithm on
C with ω−1

4 = −i and ω−1
2 = −1.

Call 1: FFT (C) = FFT (1980 − 2840i, 484, 1980 + 2840i, 6164), where

n = 4, ω−1
4 = e−i 2π

4 = cosπ/2 − i sinπ/2 = −i, ω = 1, C(e) = (484, 6164), C(o) =
(1980 − 2840i, 1980 + 2840i).

Call 1.1: FFT (C(e)) = FFT ((484, 6164)),
returns (6164 − 484, 6164 + 484) = (5680, 6648).

Call 1.2: FFT (C(o)) = FFT ((1980 − 2840i, 1980 + 2840i)),
returns (1980+2840i− 1980+2840i, 1980+2840i+1980− 2840i) = (5680i, 3960).

Loop for k = 0, ω = 1, d0 = 6648 + 3960 = 10608, d2 = 6648 − 3960 = 2688.
Loop for k = 1, ω = −i, d1 = 5680 + (−i)5680i = 11360, d3 = 5680 − (−i)5680i = 0.
returns (0, 2688, 11360, 10608).

Finally c = (c3, c2, c1, c0) =
1
4(d3, d2, d1, d0) =

1
4(0, 2688, 11360, 10608) = (0, 672, 2840, 2652).

In base-100, this is equivalent to 6720000 + 284000 + 2652 = 7006652 = 1234 × 5678.
Now we look at recursive calls:

16

Call 1.1: FFT (C(e)) = FFT ((484, 6164)), where

n = 2, ω−1
2 = e−i 2π

2 = cos π − i sinπ = −1, ω = 1, C(e)(e) = (6164), C(e)(o) = (484).
Call 1.1.1: FFT (C(e)(e)) = FFT (6164),
returns 6164, as it is a base case.

Call 1.1.2: FFT (C(e)(o)) = FFT (484),
returns 484, as it is a base case.

Loop for k = 0, ω = 1, e0 = 6164 + 484 = 6648, e1 = 6164 − 484 = 5680.
returns (5680, 6648).

Call 1.2: FFT (C(o)) = FFT (1980 − 2840i, 1980 + 2840i) similarly returns (5680i, 3960).

1.3.5 Division

The integer division algorithm that generates quotient and remainder is more involved than
other operations. We have the dividend a = (ak−1, ak−2, · · · , a1, a0) and the divisor a =
(bl−1, bl−2, · · · , b1, b0) (bl−1 6= 0) in a base-B number system. We wish to find out the quotient
q and the remainder r so that a = bq + r where 0 ≤ r < b. We further assume that k ≥ l,
otherwise, a < b implies that the quotient is zero and the remainder is a. The smallest value
of b with l digits in base B is Bl−1 and the largest value of a with k digits is Bk − 1. So the
number of digits of the quotient q can be at most k − (l − 1) = k − l + 1 = m digits. Let
the quotient bits be q = (qm−1, qm−2, · · · , q1, q0). Following example shows the basic division
algorithm.
Example 19. Let the radix B = 10, a = 3596 and b = 38. So k = 4 and l = 2. The maximum
number of quotient digits can be m = 4− 2 + 1 = 3. Let r be the partial remainder, and to
start with r is a. We perform the following computation for steps m− 1 to 0.

i rin qi ← ⌊rin/(10i · b)⌋ rout ← rin − 10i × qi × b

2 3596 3596/(102 × 38) = 0 3596 − 102 × 0× 38 = 3596
1 3596 3596/(101 × 38) = 9 3596 − 101 × 9× 38 = 176
0 176 176/(100 × 38) = 4 176− 100 × 4× 38 = 24

The quotient is 094 and the remainder is 24.
In the algorithmic form it is as follows:

div(a,b)
r ← a
for i ← m − 1 downto 0

qi ← ⌊r/(Bi · b)⌋
r ← r − (Bi · b) · qi

After the initialisation of r,

0 ≤ r = a < Bk = (Bk−l+1 ·Bl−1) ≤ (Bk−l+1 · b) = (Bm · b).

We observe the following loop-invariance at the beginning of each iteration, 0 ≤ r < Bi+1 · b.
So, when r is divided by Bi · b, the value of the quotient is in the range of 0 to B− 1, a single
digit.

The main problem is the efficient computation of ⌊ri/(Bi ·b)⌋. In a pencil-paper calculation
we ‘try’ different values of qi, multiply it with b, subtract it from ri etc.. But how can we
restrict the number of trials? We prove the following proposition.

17

Proposition 5. Let x and y be non-negative integers so that

x = x0 ·Bn + s, and 0 < y = y0 ·Bn,

such that n > 0 and 0 ≤ s < Bn, then ⌊xy ⌋ = ⌊x0
y0
⌋.

Proof: We have
x

y
=

x0 · Bn + s

y0 · Bn
=

x0
y0

+
s

y0 ·Bn
≥ x0

y0
.

So ⌊xy ⌋ ≥ ⌊x0
y0
⌋. Again,

x

y
=

x0 · Bn + s

y0 ·Bn
<

x0
y0

+
1

y0
, as s < Bn.

Let x0 = ky0 + z0, where 0 ≤ z0 < y0 and k = ⌊x0
y0
⌋. So we have

x0
y0

+
1

y0
=

ky0 + z0
y0

+
1

y0
= k +

z0 + 1

y0
≤ k + 1 = ⌊x0

y0
⌋+ 1.

So, ⌊xy ⌋ < ⌊x0
y0
⌋+ 1, hence the proof. 2

This shows that we can have simple algorithm when the divisor is single digit. Let the
dividend be a = (ak−1, ak−2, · · · , a1, a0) and a single digit divisor be b = b0. Following the
previous proposition the k digit quotient q = (qk−1, qk−2, · · · , q1, q0) can be computed as
follows:

div(a,b0)
r ← 0
for i ← k − 1 downto 0

t ← r · B + ai
qi ← ⌊t/b0⌋
r ← t mod b0

The quotient is q = qk−1 · · · q0 and the remainder is r.
Where 0 ≤ r < b0 < B, and 0 ≤ t = r · B + ai < (B − 1)B + (B − 1) = (B2 − 1). So t is

of size at most two digits.
Example 20. Let B = 100, a = 12345678910 = (1, 23, 45, 67, 89)100 and b = 6710 = (67)100.
Number of digits of the divisor is k = 5.

rin i ai t q rout
0 4 1
0 4 1 1 0 1

1 3 23
1 3 23 123 1 56

56 2 45
56 2 45 5645 84 17

17 1 67 1767
17 1 67 1767 26 25

25 0 89
25 0 89 2589 38 43

18

So the quotient is (1, 84, 26, 38)100 = 184263810 and the remainder is 43.
Example 21. Let the dividend be a = 12345678912345678910 and the divisor be b = 5012910 =
50129216 . So a = (438, 39755, 44240, 24341)216 . The quotient q = 2462781805411 ≡ (573, 26940, 4963)216
and the remainder r = 8770. Here k = 4, b = 216 = 65536.

rin i ai t q rout
0 3 438
438 3 438 438 0 438

438 2 39755
438 2 39755 28744523 573 20606

20606 1 44240 1350479056
20606 1 44240 1350479056 26940 3796

3796 0 24341
3796 0 24341 248798997 4963 8770

Division is simple when the divisor is single digit i.e. l = 1. Now we try to estimate the
quotient digit when the number of digits are one or more.
Proposition 6. Let x and y be non-negative integers such that

x = x0 · Bn + s, and 0 < y = y0 · Bn + t

where n > 0, and 0 ≤ s, t < Bn. We further suppose that 2B > 2 · y0 ≥ B i.e the dividend is
normalised, then

⌊

x

y

⌋

≤
⌊

x0
y0

⌋

≤
⌊

x

y

⌋

+ 2.

Proof: As y ≥ y0 · Bn, so

x

y
≤ x

y0 · Bn
=

x0 ·Bn + s

y0 · Bn
=

x0
y0

+
s

y0 · Bn
≤ x0

y0
.

So,
⌊

x
y

⌋

≤
⌊

x0
y0

⌋

.

We have x
y = x0·Bn+s

y0·Bn+t = x0+s/Bn

y0+t/Bn ≥ x0
y0+1 . Both s/Bn and t/Bn are less than 1, and we

reduce the numerator and increase the denominator. This gives us x0y − xy0 − x ≤ 0.
According to our assumption 2 · y0 ≥ B. Intutively it is clear that x

y < B (xy = x0Bn+s
y0Bn+t <

(B−1)Bn+(Bn−1)
Bn < B). This implies that 2y0 ≥ x/y i.e. 2yy0−x ≥ 0. So we have x0y−xy0−

x ≤ 0 ≤ 2yy0 − x. Dividing both sides by yy0 we get x0
y0
≤ x

y + 2. So, the second inequality.
2

If we take bl−1 ≥ B/2 (normalised number), then the difference between the actual quo-
tient ⌊x/y⌋ and the ‘guess’ from ⌊x0/y0⌋ may differ by at most 2. So we need at most two
iterations for each quotient digit.

Following this proposition we have the restoring division algorithm that works well with
a normalised divisor.

19

We assume that a digit-location can accommodate values in the range −B + 1 to B − 1.
So it is possible to have a negative digit.

div(a,b)
1. for i ← 0 to k − 1
2. ri ← ai
3. rk ← 0
4. for i ← k − l downto 0

5. t ← ⌊ ri+l·B+ri+l−1

bl−1
⌋

6. if t ≥ B then qi ← B − 1
7. else qi ← t
8. cy ← 0
9. for j ← 0 to l − 1
10. t ← ri+j - qibj + cy
11. ri+j ← t mod B
12. cy ← ⌊t/B⌋
13. ri+l ← ri+l + cy
14. while ri+l < 0
15. cy ← 0
16. for j ← 0 to l − 1
17. t← ri+j + bj + cy
18. ri+j ← t mod B
19. cy ← ⌊t/B⌋
20. ri+l ← ri+l + cy
21. qi ← qi − 1

1. Line 1-3: Initializes the remainder, r, with the dividend.

2. Line 4-7: Estimates the ith quotient digit qi. It is greater than or equal to the actual
quotient by at most 2. It cannot exceed B − 1 and we immediately adjust it.

3. Line 8-13: We compute

(ri+l · · · ri) ← (ri+l · · · ri)− qi · B.

The value of carry in line 8-12 is −(b− 1) to 0, and the value of ’t’ is −qibi = −b(b− 1)
to ri+j = b− 1.

4. Line 14-21: If the partial remainder is negative, then it is restored to its previous value,
and the quotient digit is reduced by 1.

The theorem on normalised data ensures that the correction loop is not executed more
than twice. The running time is not difficult to compute. The outer loop is executed k−l+1 =
m = log q times and both the inner loops are executed l = log b times each. So the running
time is O(log q · log b).

If the divisor is not normalised, we may multiply both the dividend and the divisor by
2w and get as and bs. Multiplication by a power of 2 is a left shift operation in a computer.
Now we have as = bsq + rs, where q = ⌊a/b⌋ = ⌊as/bs⌋. But the remainder is multiplied by
2w, rs = r2w. So rs is to be right shifted to get the actual remainder.

20

Left and right shift operations required for normalisation and adjustment of the remainder
takes O(log a+ log b) time. So the running time complexity remains as O(log q · log b).
Example 22. Let the base B = 100, the dividend a = (1, 20, 05, 67, 89) and the divisor
b = (60, 98). The number of digits of the dividend is k = 5 and that of the divisor is l = 2.
So the maximum possible digits in quotient is m = k − l + 1 = 4. We initialise the partial
remainder r = (0, 1, 20, 05, 67, 89). Quotient digits are computed starting from the most sig-
nificant side. We start with,

• i← k − l = 5− 2 = 3:
t← ⌊ r5×b+r4

b1
⌋ = ⌊0×100+1

60 ⌋ = 0.
q3 ← 0.
cy ← 0.

The tentative value of q3 = 0. As it is the lowest possible value of the quotient digit,
the remaining portion of the code does not have any effect. We compute the next digit.

– j ← 0: No effect

– j ← 1: No effect

• i← 2: t← ⌊ r4×b+r3
b1
⌋ = ⌊1×100+20

60 ⌋ = 2.
q2 ← 2.
cy ← 0.

The tentative value of q2 = 2. We verify it by doing the following computation.

– j ← 0:
t← ri+j − bjqi + cy = r2 − b0q2 + cy = 05− 98 × 2 + 0 = −191.
r2 ← −191 mod 100 = 09.
cy ← ⌊−191

100 ⌋ = −2.
– j ← 1:

t← ri+j − bjqi + cy = r3 − b1q2 + cy = 20− 60 × 2− 2 = −102.
r2 ← −102 mod 100 = 98.
cy ← ⌊−102

100 ⌋ = −2.

The value of ri+l = r4 ← r4 + cy = 1 − 2 = −1. As it is negative, the remainder is to
be restored.

r = (0,−1, 98, 09, 67, 89)
cy ← 0.

– j ← 0:
t← ri+j + bj + cy = r2 + b0 + cy = 09 + 98 + 0 = 107.
ri+j ← t mod B = 107 mod 100 = 07. cy ← ⌊ t

B ⌋ = ⌊107/100⌋ = 1.

– j ← 1:
t← ri+j + bj + cy = r3 + b1 + cy = 98 + 60 + 1 = 159.
ri+j ← t mod B = 159 mod 100 = 59.
cy ← ⌊ t

B ⌋ = ⌊159/100⌋ = 1.

21

New value of ri+l = r4 ← r4 + cy = −1 + 1 = 0. The quotient bit qi = q3 is modified,
q3 ← q3 − 1 = 2 − 1 = 1. After this stage we have r = (0, 0, 59, 07, 67, 89) and
q = (0, 1,−,−).

• i← 1:

• i← 0:

Example 23. Let the base of the system be b = 28 = 256, the dividend is 255073105710 ≡
(152, 9, 17, 49)b , the divisor is 3865010 ≡ (150, 250)b . So k = 4, l = 2. We initialize r =
(0, 152, 9, 17, 49)b .

• i = k − l = 4− 2 = 2:
q2 = ⌊ r4×b+r3

b1
⌋ = ⌊0×256+152

150 ⌋ = 1,
cy = 0,

– j = 0:
t = r2 − q2 × b0 + cy = 9− 1× 250 + 0 = −241
cy = −1
r2 = 15
r = (0, 152, 15, 17, 49)b .

– j = 1:
t = r3 − q2 × b1 + cy = 152 − 1× 150 − 1 = 1
cy = 0
r2 = 1
r = (0, 1, 15, 17, 49)b .

r4 = r4 + cy = 0.

• i = 1:
q1 = ⌊ r3×b+r2

b1
⌋ = ⌊1×256+15

150 ⌋ = 1,
cy = 0,

– j = 0:
t = r1 − q1 × b0 + cy = 17− 1× 250 + 0 = −233
cy = −1
r1 = 23
r = (0, 1, 15, 23, 49)b .

– j = 1:
t = r2 − q1 × b1 + cy = 15− 1× 150− 1 = −136
cy = −1
r2 = 120
r = (0, 1, 120, 23, 49)b .

r3 = r3 + cy = 1− 1 = 0. r = (0, 0, 120, 23, 49)b .

• i = 0:
q0 = ⌊ r2×b+r1

b1
⌋ = ⌊120×256+23

150 ⌋ = 204,
cy = 0,

22

– j = 0:
t = r0 − q0 × b0 + cy = 49− 204 × 250 + 0 = −50951
cy = −200
r0 = 249
r = (0, 1, 15, 23, 249)b .

– j = 1:
t = r1 − q0 × b1 + cy = 23− 204 × 150 − 200 = 30777
cy = −121
r1 = 199
r = (0, 1, 120, 199, 249)b .

r2 = r2 + cy = 120− 121 = −1.
r = (0, 0,−1, 23, 249)b .
As the digit r2 is -ve, we enter the while loop.
cy = 0

– j = 0:
t = r0 + b0 + cy = 249 + 250 + 0 = 499
r0 = 243
cy = 1
r = (0, 0,−1, 199, 243)b .

– j = 1:
t = r1 + b1 + cy = 199 + 150 + 1 = 350
r0 = 94
cy = 1
r = (0, 0,−1, 94, 243)b .

r2 = r2 + cy = −1 + 1 = 0.
q0 = q0 − 1 = 204 − 1 = 203.
r = (0, 0, 0, 94, 243)b . q = (1, 1, 203)b .

1.4 Software

GNU has a multiple precision arithmetic library (GMP: http://gmplib.org/). It is necessary
to install it on your machine. Following is a small sample program that computes n factorial.

// file name gmp1.c: $ cc -Wall gmp1.c -lgmp

#include <stdio.h>

#include <gmp.h> // header

int main()

{

mpz_t fact, im ; // multiple precision integer

int i, n;

mpz_init(fact); // initialization

mpz_init(im);

printf("Enter a positive integer: ");

23

scanf("%d", &n);

mpz_set_si(fact, 1); // setting a value

for(i=1; i<=n; ++i) {

mpz_set_si(im,i); //

mpz_mul(fact, fact, im); // fact <-- fact + im

}

gmp_printf("%d! = %Zd\n", n, fact); // print

return 0;

}

The code is compiled (provided the library is installed) with the following command:
$ cc -Wall gmp1.c -lgmp.
The library has its own manual.

The programming language Python supports multi-precision integers as its data type and
we can write normal program.

#! /usr/bin/python

fact2.py calculates factorial of a number

#

n = input("Enter a +ve integer: ")

i, fact = 1, 1

while i <= n:

fact = fact*i

i = i + 1

print n, "!=", fact

Another important software is PARI/GP available from http://pari.math.u-bordeaux.fr/.
It is usable in different forms:

1. A library libpari that can be linked with a C program.

2. A programmable calculator gp.

3. A gp2c compiler that translates a gp code to C code.

The first example is a use of libpari -

#include <stdio.h>

#include <pari/pari.h>

int main()

{

GEN n, i, fact;

pari_init(1000000,2);

printf("Enter a non-ve integer: ") ;

n = gp_read_stream(stdin);

fact = gen_1;

for(i=gen_1; gsigne(gsub(n,i))>=0; i=gadd(i,gen_1))

fact = gmul(fact,i) ;

24

pari_printf("%Ps! = %Ps\n", n, fact) ;

pari_close();

return 0 ;

} // cc -Wall pariFact1.c -lpari

The program can be compiled with the following command provided the library is in place:
$ cc -Wall pariFact1.c -lpari.

GP has a built-in operator (also a function) for computing factorial.
gp > 100!

%1 = 9332621544394415268169923885626670049071596826438162146859296389521759999
3229915608941463976156518286253697920827223758251185210916864000000000000000000000000

A simple GP script to compute n! is as follows:

gp > fact(n) = if(n, n*fact(n-1),1)

%5 = (n)->if(n,n*fact(n-1),1)

(15:37) gp > fact(0)

%6 = 1

(15:38) gp > fact(5)

%7 = 120

(15:38) gp > fact(100)

%8 = 9332621544394415268169923885626670049071596826438162146859296389521759999

3229915608941463976156518286253697920827223758251185210916864000000000000000000000000

References

[AD] Computational Number Theory by Abhijit Das, Pub. CRC Press, 2013, ISBN 978-1-
4398-6615-3.

[AKYO] A. Karatsuba & Yu. Ofman, Multiplication of Multidigit Numbers on Automata (in
Russian), Doklady Akad. Nauk SSSR 145 (1962), pp. 293-294, English translation in
Soviet Physics Doklady 7 (1963), pp. 595-596.

[DEK] The Art of Computer Programming, volume 2, Seminumerical Algorithms, by Donald

E. Knuth, (3rd. ed.), Addison-Wesley, 1999, ISBN 981-235-883-8.

[GMP] http://gmplib.org/

[PARI/gp] http://pari.math.u-bordeaux.fr/

[VS] A Computational Introduction to Number Theory and Algebra by Victor Shoup, 2nd
ed., Pub. Cambridge University Press, 2009, ISBN 978-0-521-51644-0.

[CLRS] Introduction to Algorithms, by T H Cormen, C E Leiserson, R L Rivest, C Stein, (2nd
ed). Prentice-Hall of India, 2002, 81-203-2141-3.

25

