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1 Overview of Computational Number theory

The subject mainly deals with computational problems related to number theory. It has
become important from the engineering point of view due to its application in cryptography.
Essential mathematical requirements are introductory number theory, algebraic structures,
rational points on elliptic curves, randomized algorithms etc.

The main topics of the subject are testing prime, finding factors of composite integers,
finding discrete logarithm or index in a finite group etc.

1.1 Primality Testing

It is necessary to test whether a given positive integer is a prime. It has already been proved
[AKS1] that this test can be performed in polynomial time. But AKS algorithm is not very
useful. People use randomized algorithm to test primality.
Special primes such as Mersenne prime, Mp = 2p− 1, where both p and Mp are prime are the
largest known primes. But only about 50 of them are known. The largest one was discovered
in 2013, M57,885,161 = 257,885,161 − 1 has 17,425,170 digits. Generation of large random prime
is also important.

1.2 Integer Factorisation

It is proved that it can be tested in polynomial time whether a positive integer greater than 1
is composite. But what about its factorisation? There is no known polynomial time algorithm
for this problem1.
The largest integer that was factored by general purpose algorithm in 2009 was a 232 digit
(768 bit) number from RSA’s challenge list.
12301866845301177551304949583849627207728535695953347921973224521517264005 0726365
7518745202199786469389956474942774063845925192557326303453731548268 50791702612214
291346167042921431160222124047927473779408066535141959745985 6902143413
Factorisation problem, like testing prime is also of importance.

1.3 Discrete Logarithm Problem

Let G be a group, and g ∈ G. The cyclic group < g > is generated by g. Given a ∈< g >,
find a positive integer k so that a = gk. We call the smallest such k as the discrete logarithm
of a base g or index of a base g.
In particular we may consider Z∗

n for some positive integer n. In this case a ≡ gk(mod n).

1On a quantum computer Shor’s algorithm factoring algorithm runs in polynomial time i.e. given a positive
integer n > 1, the running time is O((log n)2(log log n)(log log log n) (that is also the number of quantum gates).
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Example 1. Let n = 1021 and g = 2. We take a = 125, 125 ≡ 2288 ≡ 2628 ≡ 2968(mod 1021).
So the discrete log of 125 base 2 modulo 1021 is 288. If we take a = 5, there is no such k so
that 5 ≡ 2k(mod 1021).

Logarithm problem is not difficult for for real numbers. We have analytical techniques for
finding logb a (though approximate). Discrete logarithm problem is also not difficult for some
finite groups e.g. (Zn,+n).
Example 2. Let n = 1000, a generator for (Z1000,+1000) is 13. Let a = 251. We want
to know how many times 13 is to be added modulo 1000 so that we get 251 i.e. we want
a solution of 13k ≡ 251(mod 1000). The generator 13 is relatively prime to 1000 and we
shall prove that this linear congruence is solvable using Euclid’s gcd algorithm and Bezout’s
identity. By extended GCD algorithm we find that 13 × 77 + 1000 × (−1) = 1. So we have
13 × 77 × 251 ≡ 13 × 327 ≡ 251(mod 1000). The discrete logarithm of 251 with respect to
the generator 13 modulo 1000 is 327.

But for some group e.g. Z∗

p it is believed that finding discrete logarithm is difficult. The
famous Diffie-Hellman protocol is based on this assumption:
Two parties Alice and Bob publicly decides a finite cyclic group G e.g. (Z∗

p,×p) and a
generator g. Alice secretly chooses a random integer a ∈ {2, 3, · · · , p − 1} and Bob secretly
chooses another random integer b from the same set. Alice computes A = ga and sends it to
Bob; similarly Bob computes B = gb and sends it to Alice. After receiving the keys, Alice
and Bob computes Ba = (gb)a = K = (ga)b = Ab. So they have a common secret key K. An
eavesdropper can get both A and B, but cannot compute K (easily).
In case of Z∗

p, so far known discrete log algorithms are sub-exponential in complexity

(O(ec
3
√

(log p)(log log p)2)). In this case also there is a polynomial time algorithm on a quantum
computer [PWS].

It is clear that the choice of the group is important for this protocol. And there comes
Elliptic curves. Points on an elliptic curve may come from different fields e.g. rational points
(Q), real points (R), complex points (C), or even from finite fields (Fp). The group formed by
the points from Fp on an elliptic curve is a finite group.
The best known algorithm of discrete logarithm problem on the group of points on a elliptic
curve over finite field is of exponential time complexity e.g. O(

√
p) for a curve over Fp.

We take a simpler example of a group of rational points on a unit circle, x2 + y2 = 1,
C(Q) = {(a/c, b/c) : a2 + b2 = c2, a, b, c ∈ Z}. The binary operation is usual multiplication of
two complex numbers: if (a, b), (c, d) ∈ C(Q), (a, b)⊗ (c, d) = (ac − bd, ad+ bc). It is easy to
establish closure -

(ac− bd)2 + (ad+ bc)2 = a2c2 + b2d2 − 2abcd+

= a2d2 + b2c2 + 2abcd,

= a2(c2 + d2) + b2(c2 + d2),

= a2 + b2,

= 1.

The identity element is same as a complex number, (1, 0), the inverse of (a, b) is also same as
a complex number with a2 + b2 = 1, so it is (a,−b).

An elliptic curve has an equation of the form y2 = x3 + Ax+ B, where the discriminant
−(4A3 + 27B2) of the right-hand side cubic polynomial is nonzero 2 i.e. three roots of the

2Discriminant of ax3 + bx2 + cx + d = 0 is D = b2c2 − 4b3c − 4ac3 + 18bcd − 27a2d2. In out case
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polynomial are distinct. Points on an elliptic curve {(x, y) : y2 = x3+Ax+B}, forms a group
if we adjoin it with another point O, a “point at infinity”.

The group can be constructed geometrically. We start with two points A and B on the
curve and join them by a straight line. We assume that the line is not parallel to the y-axis
and intersects the curve at C. We draw the line passing through C and parallel to the y-axis.
This line intersects the curve at a point C ′ (image of C with respect to the X-axis). We
call C ′ = A + B. When A and B coincides, we draw a tangent at A, get C and C ′, where
C ′ = A+A = 2A. The line passing through A and parallel to the y axis intersects the curve
at A′, this is −A. The line joining A and −A does not meet the curve at a finite distance. So
we introduce the point O at infinity, A+ (−A) = O.
The elliptic curve discrete logarithm (ECDL) problem is about the finite group of points
from Fp on an elliptic curve. The best known algorithm for this problem is of exponential
complexity.

1.4 Modular Square Roots

An integer a is called a quadratic residue modulo n if gcd(a, n) = 1 and there is some b such
that b2 ≡ a(mod n). If n is a prime or the prime decomposition of n is given, then there is
an efficient probabilistic algorithm to find the modular square root of a.
The quadratic residuocity assumption is that it is hard to distinguish between a square and
a non-square modulo n, if n = pq, a product of distinct primes, and the factorisation is not
known.
So a good algorithm of prime factorisation will give a good algorithm of modular square root
problem. This is important for cryptography.
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a = 1, b = 0, c = A, d = B. So the discriminant is D = −4A3
− 27B2.
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