Computer Science & Engineering Department IIT Kharagpur Computational Number Theory: CS60094 Lecture VIII

Instructor: Goutam Biswas

Spring Semester 2014-2015

1 Finite Fields

1.1 Introduction

An integral domain is a commutative ring with identity where $1 \neq 0$ and $a \times b = 0$ implies that either a = 0 or b = 0. The set of integers, \mathbb{Z} , is an integeral domain. A field is a commutative ring with identity where every non-zero element is invertible. A finite field has finite number of elements e.g. \mathbb{F}_q is a field with qelements¹. It is often called a *Galois field* and GF(q) is also used as a notation. It is known that $(\mathbb{Z}_p, +_p, \times_p, 0, 1)$ is a field if p is prime². This is a *Galois field* \mathbb{F}_p of order p.

Example 1. The set $\mathbb{F}_2 = \{0, 1\}$ under modulo 2 addition and multiplication is a field.

In fact for every positive integer n and every prime p, there is a field with p^n elements. We start with a few definitions.

Let *R* be a ring with identity. There is a map $\mathbb{Z} \to R$ such that $0 \mapsto 0_R$, the additive identity of *R*, $1 \mapsto 1_R$, the multiplicative identity of *R*. If n > 1,

 $n \mapsto n_R = \overbrace{1_R + \cdots + 1_R}^{n}$, and if n < 0, then $n \mapsto n_R = -(-n)_R$, where the inner minus is on integer n and the outer minus is for the additive inverse in R. If there is no ambiguity, we shall use n for n_R .

<u>Definition 1:</u> In a ring R, the smallest positive integer n, if it exists, is called the characteristic of R, char(R), if $\underbrace{1_R + \cdots + 1_R}_{n} = n \times 1_R = 0$. If there is no

such n, then char(R) = 0.

Example 2. $Char(\mathbb{Z}_n) = n$, for a positive integer n > 1 and $Char(\mathbb{Z}) = 0$ **Proposition 1.** If D is an integral domain where Char(D) > 0, then Char(D)is a prime number. A finite integral domain(field) D has a prime characteristic. QED.

Proof: Let Char(D) = n > 0 be a composite number, so n = pq, where 1 < p, q < n. But then we have

$$0 = n \times 1 = (pq) \times 1 = \overbrace{1 + \dots + 1}^{pq} = \overbrace{1 + \dots + 1}^{q} + \dots + \overbrace{1 + \dots + 1}^{q} = \overbrace{p_F + \dots + p_F}^{q}$$

Now $p_D \cdot (1 + \cdots + 1) = p_D \cdot q_D$. But an ntegral domain does not a have a zero divisor³, so either $p_D = 0$ or $q_D = 0$. It contradicts our assumption that 1 < p, q < n.

In a finite integral domain 1_D , $1_D + 1_D = 2_D$, $1_D + 1_D + 1_D = 3_D$, \cdots cannot be all distinct. So we have $p_D = q_D$, where p < q. By cancelling p elements we get $(q - p)_D = 0$. So the characteristic is positive and we already have proved that it is a prime. QED.

A subfield F' of a field F is defined in the usual way: $F' \subseteq F$ and F' is a field under the operations of F restricted to F'. It is not difficult to prove that intesection of subfields will form a subfield.

¹We shall prove that all fields with q elements are isomorphic.

 $^{{}^{2}(\}mathbb{Z}_{p},+_{p},\times_{p},0,1)$ is a commutative ring with identity. And for all $a \in \mathbb{Z}_{p} \setminus \{0\}$, ax = 1 has a solution in \mathbb{Z}_{p} as $ax \equiv 1 \pmod{p}$ has a solution.

³Let $a, b \in F$ and $a \neq 0 \neq b$, but ab = 0. Multiplying both sides by a^{-1} we get b = 0, a contradiction.

Let F be a field, it has the smallest subfield, the intersection of all subfields of F. It is known as prime subfield of F.

If F and F' are two fields, then a map $\phi : F \to F'$ is called a field homomorphism if $\phi(a +_F b) = \phi(a) +_{F'} \phi(b)$ and $\phi(a \times_F b) = \phi(a) \times_{F'} \phi(b)$.

Example 3. Let F and F' be two fields and the map $\phi: F \to F'$ be a homomorphism. Following facts can be verified.

- 1. $\phi(0_F) = 0_{F'}$: $\phi(0_F) = \phi(0_F + 0_F) = \phi(0_F) + {}_{F'} \phi(0_F)$. So $\phi(0_F) = 0_{F'}$.
- 2. $\phi(1_F) = 1_{F'}$: the justification is similar.
- 3. $-\phi(a) = \phi(-a)$: $0_{F'} = \phi(0_F) = \phi(a + F(-a)) = \phi(a) + F'(\phi(-a))$. So $-\phi(a) = \phi(-a)$.
- 4. $\phi(a)^{-1} = \phi(a^{-1})$: the justification is similar.
- 5. $Im(\phi)$ or $\phi(F)$ is a subfield of F': let $\phi(a), \phi(b) \in F'$ for some $a, b \in F$. We know that $\phi(a) +_{F'} \phi(b) = \phi(a +_F b) \in \phi(F)$. Similarly it is possible to show that $\phi(a) \times_{F'} \phi(b) \in \phi(F)$. So $\phi(F)$ is closed under both the operations. We have already seen that the identity elements of both the operations are in $\phi(F)$, and if $\phi(a) \in \phi(F)$, then its inverse is also there. Associative and distributive laws are satisfied.
- 6. Let $F'' \subseteq F'$ be a subfield of F'. $\phi^{-1}(F'') = \{a \in F : \exists b \in F'', \phi(a) = b\}$ is a subfield of F: as $0_{F'} = \phi(0_F)$ and $1_{F'} = \phi(1_F)$ are in $F'', 0_F, 1_F \in \phi^{-1}(F'')$. If $a \in \phi^{-1}(F'')$, then $\phi(a) \in F''$. So, $\phi(a)^{-1} \in F''$. But we know that $\phi(a^{-1}) = \phi(a)^{-1}$, so $a^{-1} \in \phi^{-1}(F'')$. Finally if $a, b \in \phi^{-1}(F'')$, $\phi(a), \phi(b) \in F''$ and both $\phi(a) +_{F'} \phi(b) = \phi(a +_F b)$ and $\phi(a) \times_{F'} \phi(b) = \phi(a \times_{F'} b)$ are in $\phi^{-1}(F'')$. So $a +_F b$ and $a \times_{F'} b$ are in $\phi^{-1}(F'')$.

Proposition 2. If F is a finite field so that char(F) = p, then the prime subfield of F is isomorphic to \mathbb{F}_p . QED.

Proof: We define a map $\phi : \mathbb{F}_p \to F$ so that $n \mapsto \overbrace{1 + \cdots + 1}^{r}$. We observe that

$$\phi(m+n) = \overbrace{1+\dots+1}^{m+n} = \overbrace{1+\dots+1}^{m} + \overbrace{1+\dots+1}^{n} = \phi(m) + \phi(n),$$

and also

So the map ϕ is a homomorphism. We further show that ϕ is an injection i.e. a monomorphism.

Assume that $\phi(a) = \phi(b)$, where $0 \le a < b < p$. Then we have c = b - a > 0.

$$\begin{aligned}
\phi(1) &= \phi(c \cdot c^{-1}) = \phi(c) \cdot \phi(c^{-1}) \\
&= \phi(b-a) \cdot \phi(c^{-1}) \\
&= (\phi(b) + (-\phi(a))) \cdot \phi(c^{-1}) \\
&= 0_F \cdot \phi(c^{-1}) = 0_F.
\end{aligned}$$

But $\phi(1) = 1_F \neq 0_F$ - a contradiction. ϕ is an injection and the image of \mathbb{F}_p in F, $\phi(\mathbb{F}_p)$ is a subfield of F.

It is known that \mathbb{F}_p does not have any proper subfield and is its own prime. So $\phi(\mathbb{F}_p)$, is the smallest or prime subfield of F which can be identified with \mathbb{F}_p . QED.

1.2 Vector Space

We have not seen so far any finite field other than \mathbb{F}_p . We introduce the concept of vector space and claim that a field F is a vector space over its subfield.

The concept of vector space is a generalisation of the collection of Euclidean vectors over \mathbb{R}^n . Following is the formal definition.

<u>Definition 2:</u> A vector space over a field F is a set V equipped with the binary opeartion "addition" defined on its elements and multiplication by the elements of F (known as scalar), satisfying the following set of axioms:

- 1. V is a *commutative* group under vector addition.
- 2. The scalar multiplication is distributed over vector addition, i.e. for all $u, v \in V$ and for all $a \in F$, a(u + v) = au + av.
- 3. The vector multiplication is distributed over scalar addition, i.e. for all $u \in V$ and for all $a, b \in F$, (a + b)u = au + av.
- 4. For all $u \in V$ and for all $a, b \in F$, (ab)u = a(bu).
- 5. For all $u \in V$, 1u = u.

Elements of a vector space are called *vectors*. The identity element of vector addition is known as the *null vector* 0.

Example 4. Following are a few examples of vector spaces.

- 1. 2, 3, or n dimensional Euclidean vector spaces over \mathbb{R} . The addition of two vectors and multiplication by scalar are as usual.
- 2. Given any field F and a positive integer n, the collection of n-tuples of elements of F, F^n , is a vector space over F under the following definition of addition and scalar multiplication:

Let $(a_1, \dots, a_n), (b_1, \dots, b_n) \in F^n$ and $c \in F$.

- $(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$, and
- $c(a_1, \cdots, a_n) = (ca_1, \cdots, ca_n).$

By this definition \mathbb{C} is a vector space over \mathbb{R} .

- 3. The collection of all functions from a non-empty set A to F, where F is a field, is a vector space over F where addition and scalar multiplication are defined as follows: Let $f, g \in F^A$ and $c \in F$.
 - (f+g)(a) = f(a) + g(a), for all $a \in A$, and
 - (cf)(a) = c(f(a)), for all $a \in A$.
- 4. All 2×2 matrices over \mathbb{R} , $\mathcal{M}_2(\mathbb{R})$, is a vector space.
- 5. If L be a subfield of F, then F may be viewed as a vector space over L in a natural way under the addition and multiplication of the field F.

<u>Definition 3:</u> Let V be a vector space over the field F and $U \subseteq V$. The subset U is called a subspace of V if it satisfies the following conditions:

- 1. U is a subgroup of V,
- 2. if $u \in U$, then for all $a \in F$, $au \in U$.

<u>Example 5.</u> In \mathbb{R}^3 , vectors lying on a plane passing through the origin forms a subspace of \mathbb{R}^3 . Similarly vectors along a line passing through origin also forms a subspace of \mathbb{R}^3 . Finally the *null vector* $(0,0,0)^T$ (origin) alone forms a subspace.

In connection to the Euclidean space \mathbb{R}^3 , we know that there are three unit vectors $u = (1,0,0)^T$, $v = (0,1,0)^T$, $w = (0,0,1)^T$. Any vector $a \in \mathbb{R}^3$ can be expressed as a linear combination of the unit vectors, $a = (x, y, z)^T = xu + yv + zw$, where $x, y, z \in \mathbb{R}$, are known as the coordinates of a. The set $\{u, v, w\}$ is called a basis of the vector space \mathbb{R}^3 .

We also know that the *basis* set is not unique and any set of three non-coplanar vectors can form a *basis* for \mathbb{R}^3 . In general we have the following definitions.

<u>Definition 4:</u> Let V be a vector space over a field F and let $u_1, \dots, u_n \in V$. A linear combination of these n vectors is $a_1u_1 + \dots + a_nu_n$, where $a_1, \dots, a_n \in F$. The linear combination is called *trivial* if $a_1 = \dots = a_n = 0 \in F$; otherwise it is called *nontrivial*.

Let $U = \{u_1, \dots, u_n\} \subseteq V$. U is called *linearly dependent* if there is a nontrivial linear combination that gives the null vector (0). Otherwise the set is called *linearly independent*.

<u>Example 6.</u> In \mathbb{R}^3 , $u_1 = (-1, -3, -1)^T$, $u_2 = (2, -2, -2)^T$, $u_3 = (-4, 0, 2)^T$ are linearly dependent as

$$2(-1, -3, -1)^{T} + (-3)(2, -2, -2)^{T} + (-2)(-4, 0, 2)^{T} = (0, 0, 0).$$

But, $(1, 2, -1)^T$, $(1, -1, 2)^T$ and (-1, 3, -1) are linearly independent. We can show this by proving that $x(1, 2, -1)^T + y(1, -1, 2)^T + z((-1, 3, -1)) = (0, 0, 0)^T$ does not have any solution other than (0, 0, 0).

Proposition 3. Let V be a vector space over the field F. The vectors $u_1, \dots, u_n \in V$ are *linearly dependent* if and only if one of them is a non-trivial linear combination of the other. QED.

Proof: Without any loss of generality we assume that $u_1 = a_2u_2 + \cdots + a_nu_n$. So we have $u_1 - a_2u_2 - \cdots - a_nu_n = 0$, a non-trivial linear combination $\{u_1, \cdots, u_n\}$ gives the null vector.

In the other direction we assume that $a_1u_1 + \cdots + a_nu_n = 0$. One of $a_i \neq 0$. So we have $u_i = \frac{-a_1}{a_i}u_1 + \cdots + \frac{-a_{i-1}}{a_i}u_{i-1} + \frac{-a_{i+1}}{a_i}u_{i+1} + \cdots + \frac{-a_n}{a_i}u_n$. QED. A set U of vectors is *linearly dependent* does not mean that every element of U can be expressed as a linear combination of the other.

Example 7. Consider $u_1 = (1, 2, 3)^T$, $u_2 = (2, 4, 6)^T$ and $u_3 = (1, 1, 1)$. They are linearly dependent as $2u_1 - u_2 = 0$. But u_3 cannot be expressed as linear combination of u_1 and u_2 as they are along the same line, but the line of support of u_3 is different.

<u>Definition 5:</u> Let V be a vector space over the field F and $S \subseteq V$. The linear span of S, denoted by $\langle S \rangle$, is defined as follows:

$$\langle S \rangle = \left\{ \sum_{i=1}^{n} a_i u_i : n \in \mathbb{N}, a_i \in F, u_i \in S \right\}.$$

<u>Definition 6:</u> A vector space V over a field F is said to be finite dimensional if there is a finite subset S of V so that $\langle S \rangle = V$. Otherwise it is infinite dimensional.

Example 8. We consider $\mathbb{R}[X]$, the polynomial functions of single variable on the real field. It is not difficult to check that $\mathbb{R}[X]$ is a vector space over \mathbb{R} . But this space cannot be spanned by any finite set. One set that spans this space is $S = \{x^n : n = 0, 1, 2, \dots\}$. The set S may be viewed as a collection of e_i 's, $i \in \mathbb{N}$, where $e_i = (a_i)_{i=1}^{\infty}$ such that $a_j = 1$ if i = j but $a_j = 0$ if $i \neq j$. Any polynomial can be written as a linear combination of finite number of elements of S. So it is an infinite dimensional vector space.

<u>Definition 7:</u> Let V be a finite dimensional vector space over the field F. A set $B = \{e_1, \dots, e_n\} \subset V$ is called a basis of V if the vectors of B are linearly independent and $\langle B \rangle = V$.

It can be proved that every vector space finite or infinite dimensional has a basis. The proof requires $Zorn's \ lemma^4$, a variation of $Axiom \ of \ Choice^5$. The basis may be uncountably infinite.

<u>Example 9.</u> Consider the vector space $\mathbb{R}^{\infty} = \{(a_i)_{i=1}^{\infty} : a_i \in \mathbb{R}\}$. It cannot have a countable basis(why?).

Proposition 4. If a vector space V over the field F is spanned by m vectors, then any set of n vectors of V, where n > m, are *linearly dependent*. QED.

Proof: Let $V = \langle \{u_1, \cdots, u_m\} \rangle$ and $v_1, \cdots, v_n \in V$. So we have

$$v_1 = a_{11}u_1 + \dots + a_{1m}u_m$$

$$\vdots \vdots \vdots$$

$$v_n = a_{n1}u_1 + \dots + a_{nm}u_m$$

We consider the following system of m homogeneous equations:

$$a_{11}x_1 + a_{21}x_2 + \dots + a_{n1}x_n = 0$$

 $\vdots \vdots \vdots$
 $a_{1m}x_1 + a_{2m}x_2 + \dots + a_{nm}x_n = 0$

The number of unknowns n in these equations is greater than the number of equations m It is known that there is a *non-null* solution of this system. Let the solution be (b_1, \dots, b_n) .

So we have

$$b_1v_1 + \dots + b_nv_n = b_1(a_{11}u_1 + \dots + a_{1m}u_m) + \dots + b_n(a_{n1}u_1 + \dots + a_{nm}u_m)$$

= $u_1(a_{11}b_1 + \dots + a_{n1}b_n) + \dots + u_m(a_{1m}b_1 + \dots + a_{nm}b_n)$
= 0.

So v_1, \dots, v_n are linearly dependent.

Proposition 5. All bases of a finite-dimensional vector space V over a fieldF contains same number of vectors.QED.

Proof: Let B_1 and B_2 be two bases of V with n_1 and n_2 vectors so that $n_2 > n_1$. But according to the previous proposition n_2 vectors of B_2 are linearly dependent. This is contradictory. QED.

The size of a basis of a finite-dimensional vector space is known as dimension of the vector space, $\dim V$.

We use the concept of vector space to characterise the size of a finite field. We know that a field F may be viewed as a vector space of its subfield K. Let char(F) = p, a prime, and |F| > p. We know that $\mathbb{F}p$ is isomorphic to the prime subfield of F. So F may be viewed as a vector space over $\mathbb{F}p$. Let the dimension of F over \mathbb{F}_p or the degree or $[F : \mathbb{F}p]$ be n. We have the following proposition. **Proposition 6.** If F is a finite field with char(F) = p, then there is a positive integer n such that $|F| = p^n$. QED.

Proof: We know that $[F : \mathbb{F}p] = n$. So a basis of F is an n element subset $B = \{u_1, \dots, u_n\}$ of F. Every element of $v \in F$ can be expressed as a linear combination $a_1u_1 + \dots + a_nu_n = v$, where $a_i \in \mathbb{F}p$. There are p elements in $\mathbb{F}p$, so we have p^n linear combinations⁶. So there are p^n elements in F. QED.

QED.

⁴Zorn's lemma is also known as Kuratowski-Zorn lemma. Let P be a collection of subsets of some set A. P has the property that whenever there is a chain of subsets $A_1 \subset A_2 \subset \cdots$ in P, then their union $\cup A_i$ is in P. According to Zorn's lemma, P has a maximal element A_m i.e. there is no $B \in P$ such that $A_m \subset B$.

⁵There are different versions of this axiom of set theory. It assumes that for evey indexed family of non-empty sets $\{A_i\}_{i \in I}$, there is an indexed family of elements $\{a_i\}_{i \in I}$ such that $a_i \in A_i$ for all $i \in I$.

⁶Two linear combinations cannot give the same element of F. If $a_1u_1 + \cdots + a_nu_n = b_1u_1 + \cdots + b_nu_n$, then $(a_1 - b_1)u_1 + \cdots + (a_n - b_n)u_n = 0$. But that is impossible as u_1, \cdots, u_n are linearly independent.

So the number of elements of any finite field can be a power of some prime.

Example 10. We consider the case of \mathbb{F}_{2^2} . We know that \mathbb{F}_2 is embedded in \mathbb{F}_{2^2} . So we take 0 and 1 with their usual meaning. Let *a* be another element, so a + 1 is the fourth element to make the set closed under addition. We know that $char(\mathbb{F}_{2^2}) = 2$ i.e. 1 + 1 = 0, then for all $x \in \mathbb{F}_{2^2}$, x + x = 0. We also cannot have $a \cdot a = a$ or a(a + 1) = a + 1, as that implies a = 1. a(a + 1) = a implies that a = 0. So we have the following addition and multiplication tables.

+	0	1	a	a + 1	×	0	1	a	a + 1
0	0	1	a	a+1	0	0	0	0	0
1	1	0	a+1	a	1	0	1	a	a+1
a	a	a+1	0	1	a	0	a	a+1	1
a+1	a+1	a	1	0	a+1	0	a+1	1	a

What can be a basis for \mathbb{F}_{2^2} ? Clearly 0 cannot be there in the basis as $\{0, u\}$ is always linearly dependent: $c \cdot 0 + 0 \cdot u = 0$, where $c \neq 0$. We may have $\{1, a\}$.

For a prime p, GF(p), \mathbb{Z}_p and \mathbb{F}_p means the same field. But if $n = p^k$, where p is a prime and k > 1, then \mathbb{Z}_n is algebraically different from GF(n) or \mathbb{F}_n , where \mathbb{Z}_n is not a field, has $p^k - (\phi(p^k) + 1) = p^k - p^k + p^{k-1} - 1 = p^{k-1} - 1$ zero divisors.

<u>Example 11.</u> In \mathbb{Z}_4 we have $2 \times_4 2 = 0$. But the multiplication table of $\mathbb{F}4$ does not have any such element. have any such

1.3 Polynomials

A polynomial over a ring R is a function $f : R \to R$ of the form $f(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_i x + \dots + a_n x^n$, where $a_i \in R$.

If all a_i 's are 0, then it is called a zero polynomial, and is denoted by 0. If the leading coefficient $a_n \neq 0$, then n is called the degree of f, denoted by deg(f). By convention the degree of the zero polynomial is $-\infty$. A polynomial f is called a constant polynomial if dig(f) is 0 or $-\infty$. If the ring R has the multiplicative identity element 1, and $a_n = 1$, then f(x) is called a monic polynomial.

identity element 1, and $a_n = 1$, then f(x) is called a monic polynomial. Two polynomials $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{n} b_i x^i$ are said to be equal if and only if $a_i = b_i$ for all $i = 0, \dots, n$.

Polynomial f and g can be added to get $h(x) = \sum_{i=0}^{n} c_i x^i$, where $c_i = a_i + b_i$ for all $i = 0, \dots, n$. We can pad a polynomial with zero coefficients for the purpose of comparison and addition. But normally *terms* with zero coefficients are not written explicitly.

Example 12. Let $f(x) = 2x^2 - 5$ and $g(x) = 7x^3 + 5x + 6$. The sum $h(x) = \overline{f(x) + g(x)} = (0+7)x^3 + (2+0)x^2 + (0+5)x + (-5+6) = 7x^3 + 2x^2 + 5x + 1$. Product of two polynomials, $f(x) = \sum_{i=0}^n a_i x^i$ and $g(x) = \sum_{i=0}^m b_i x^i$ is

$$h(x) = f(x)g(x) = \sum_{k=0}^{m+n} c_k x^k$$
, where $c_k = \sum_{0 \le i \le n \land 0 \le j \le m}^{i+j=k} a_i b_j$

<u>Example 13.</u> Let $f(x) = 2x^2 - 5x$ and $g(x) = 7x^3 + 2x^2 + 6$. The product $h(x) = (2 \times 7)x^5 + (2 \times 2 + 7 \times (-5))x^4 + (-5 \times 2)x^3 + (2 \times 6)x^2 + (-5 \times 6)x = 14x^5 - 31x^4 - 10x^3 + 12x^2 - 30x$.

Given the above definitions, it is clear that collection of all polynomials over R, denoted by R[x], forms a ring.

Example 14. Let $R = \mathbb{Z}_6$ and $f(x) = 2x^2 + 1$ and $g(x) = 4x^2 + 3x$. So $f(x) + g(x) = (2+4)x^2 + 3x + 1 = 3x + 1$.

If we take $h(x) = 3x^2$, then $f(x)h(x) = 3x^2$. Finally if we take $k(x) = 2x^2$, then h(x)k(x) = 0, the product of two non-zero polynomial is a zero polynomial. So it is not an *integral domain*.

We have $deg(f+g) \le max(deg(f) \ deg(g))$, and $deg(fg) \le deg(f) + deg(g)$.

R[x], the ring of polynomials over R, is commutative, if R is commutative. R[x] has the identity element 1 if R is a ring with identity. We are interested about polynomials over a *field*, where every non-zero element is invertible and there is no zero-divisor.

Let F be a field. Polynomial division over F[x] is similar to integer division. The division algorithm is as follows:

If $g, f \in F[x]$ are such that $g \neq 0$, then there exists $q, r \in F[x]$, such that f(x) = g(x)q(x) + r(x), where deg(r) < deg(g). The polynomial g divides the polynomial f if r = 0 i.e. f = gq.

Example 15. Let the field be \mathbb{F}_7 and $g(x) = 3x^2 + 2$, $f(x) = 2x^5 + 4x^3 + 3x + 1$ be polynomials over \mathbb{F}_7 . We do the usual long division.

The first term of the quotient is $3x^3$ as $3x^2 \times 3x^3 = 2x^5$. The first partial remainder is $r_1(x)$,

$$r_1(x) = f(x) - 3x^3(3x^2 + 2)$$

= $2x^5 + 4x^3 + 3x + 1 - (2x^5 + 6x^3)$
= $2x^5 + 4x^3 + 3x + 1 + (-2)x^5 + (-6)x^3$
= $5x^3 + 3x + 1$.

The second term of the quotient is 4x as $4x \times 3x^2 = 5x^3$. The final remainder is r(x),

$$r(x) = r_1(x) - 4x(3x^2 + 2)$$

= $5x^3 + 3x + 1 - (5x^3 + x)$
= $5x^3 + 3x + 1 + (-5)x^3 + (-1)x$
= $2x + 1$.

So we have

$$2x^{5} + 4x^{3} + 3x + 1 = (3x^{2} + 2)(3x^{3} + 4x) + (2x + 1).$$

Given a ring R and $S \subseteq R$, S is a subring of R, if S is an additive subgroup and is closed under multiplication. If the ring has an identity element 1, the conditions for S to be a subring are (i) $-1 \in S$, (ii) S is closed under addition, and (iii) S is closed under multiplication⁷. A subring I of R is an ideal, if for all $a \in I$ and all $r \in R$, ar and $ra \in I$. We also know that for a commutative ring R with identity, the smallest ideal that contains $a \in R$ is $(a) = \{ar : r \in R\}$. This is called the principal ideal generated by a.

Example 16. Consider \mathbb{Z} the ring of integers. Take $105 \in \mathbb{Z}$. The ideals that contain 105 are $\{\cdots, -6, -3, 0, 3, 6, \cdots\}$, $\{\cdots, -10, -5, 0, 5, 10, \cdots\}$ and $\{\cdots, -14, -7, 0, 7, 14, \cdots\}$, \mathbb{Z} .

But the smallest one is $(105) = \{\cdots, -210, -105, 0, 105, 210, \cdots\}$, the principal ideal generated by 105.

<u>Definition 8:</u> An integral domain D where every ideal is a principle ideal is called a principle ideal domain (PID).

Example 17. \mathbb{Z} is a PID where every ideal is of the form $n\mathbb{Z}$, $n \in \mathbb{Z}$.

An ideal I over the ring R defines a partition as it is a subgroup (normal) under addition. The equivalence classes are called residue classes modulo I and are cosets of I. For each element $a \in R$, an equivalence class [a] = a + I. Two elements $b, c \in R$ are equivalent modulo I if they belong to the same equivalence class say [a] i.e. b = a + p and c = a + q, where $p, q \in I$. This implies that $b - c = p - q \in I^8$. It is denoted as $b \equiv c \pmod{I}$. The equivalence classes modulo n over \mathbb{Z} are essentially equivalences classes modulo the ideal $n\mathbb{Z}$.

We can naturally define addition and multiplication operations on the quotient set: (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = ab + I. So the quotient set is also a ring called quotient ring R/I.

⁷Let $a \in R$, then $(-1)a = -a \in R$ and $a + (-1)a = a - a = 0 \in R$. For a finite ring, closure under addition and multiplication is enough to form a subring.

⁸In multiplicative notation $bc^{-1} \in I$.

On \mathbb{Z} the quotient ring (commutative with identity) modulo n is $\mathbb{Z}/n\mathbb{Z}$ but we also use the old notation \mathbb{Z}_n

Proposition 7. If F is a field, then F[x] is a principal ideal domain. For every ideal I, either I = (0) or there is a unique monic polynomial $f \in F[x]$ such that I is generated by f. QED.

Proof: We have (0), the zero-polynomial.

If $I \neq \{0\}$, then there is a non-zero polynomial h(x) of minimal degree in I. If h(x) is monic, then we take f(x) = h(x), otherwise we take $f(x) = a^{-1}h(x)$, where a is the leading coefficient of h(x). So f is monic and is in I.

Let $g \in I$, by division algorithm we have $q, r \in F[x]$ such that g = fq + r, where deg(r) < deg(f). But then r = g - fq, implies that $r \in I$, which is a contradiction. So r = 0 and f|g i.e. (f) = I.

To prove the uniqueness we assume that I = (f') where $f' \in I$ and is monic. So we have f = pf' = p(p'f) = (pp')f i.e. pp' = 1. So both p and p' are constant polynomials. But both f and f' are monic, so p = 1 = p', implies that f = f'. *QED*.

We define GCD of two polynomials over a field F. Let $f, g \in F[x]$ such that both are not equal to 0. There is a unique monic polynomial d such that (i) d divides both f and g, (ii) any polynomial $c \in F[x]$, dividing both f and g, divides d. We also have the Bezout's identity, d = uf + vg, where $u, v \in F[x]$.

Example 18. Consider $f(x) = 4x^7 + 2x^6 + 3x^4 + 4x^2 + 2x + 2$ and $g(x) = x^6 + 3x^5 + x^4 + x^3 + 2x^2 + 3$ over \mathbb{F}_5 . We want to compute gcd(f,g) = d (say). We rewrite f(x) = 4f'(x), where $f'(x) = x^7 + 3x^6 + 2x^4 + x^2 + 3x + 3$. As d is a monic polynomial, the gcd(f,g) = gcd(f',g). We divide f' by g and get

$$\begin{array}{rcl} f'(x) &=& g(x)(x) + r_1(x), \mbox{ where} \\ r_1(x) &=& 4x^5 + x^4 + 3x^3 + x^2 + 3 = 4r_1'(x), \mbox{ where} \\ r_1'(x) &=& x^5 + 4x^4 + 2x^3 + 4x^2 + 2. \end{array}$$

In the second stage,

$$g(x) = r'_1(x)(x+4) + r_2(x), \text{ where} r_2(x) = 3x^4 + 4x^3 + x^2 + 3x = 3r'_2(x), \text{ where} r'_2(x) = x^4 + 3x^3 + 2x^2 + x.$$

In the third stage

$$r'_1(x) = r'_2(x)(x+1) + r_3(x)$$
, where
 $r_3(x) = 2x^3 + x^2 + 4x + 2 = 2r'_3(x)$, where
 $r'_3(x) = x^3 + 3x^2 + 2x + 1$.

Finally, $r'_{3}(x)|r'_{2}(x)$, so the $gcd(f,g) = x^{3} + 3x^{2} + 2x + 1$, and we have

$$gcd(f,g) = x^{3} + 3x^{2} + 2x + 1$$

$$= r'_{3}(x)$$

$$= 3r_{3}(x), \text{ as } (2)^{-1} = 3 \in \mathbb{F}_{5},$$

$$= 3(r'_{1}(x) - r'_{2}(x)(x+1))$$

$$= 3(r'_{1}(x) - 2(g(x) - r'_{1}(x)(x+4))(x+1)), \text{ as } r'_{2}(x) = 2r_{2}$$

$$= 4(x+1)g(x) + r'_{1}(x)(3 + (x+1)(x+4)).$$

$$= 4(x+1)g(x) + 4(f'(x) - xg(x))(3 + (x+1)(x+4)), \text{ as } r'_{1}(x) = 4r_{1}(x)$$

$$= (x^{2} + 2)f(x) + (x^{3} + x + 4)g(x), \text{ as } f'(x) = 4f(x).$$

So the Bezout's coefficients are, $x^2 + 2$ and $x^3 + x + 4$. <u>Definition 9:</u> A polynomial p of positive degree in F[x], where F is a field, is called irreducible in F, if whenever p = qr and $q, r \in F[x]$, then either q or r is a constant polynomial.

An irreducible polynomial p is also known as prime in F[x].

It is important to mention the field while calling a polynomial irreducible.

Example 19. The polynomial $x^2 + 1$ is irreducible in $\mathbb{R}[x]$, but can be factorised as (x+i)(x-i) in $\mathbb{C}[x]$. Similarly $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$ but not in $\mathbb{R}[x]$. The polynomial $x^3 + x + 1$ is irreducible in \mathbb{F}_2 .

We accept the following facts about polynomials over F[x], where F is a field, without proof.

- 1. If $f \in F[x]$ is of positive degree, then $f = cp_1^{e_1} \cdots p_k^{e_k}$, where $p_1, \cdots, p_k \in F[x]$ are irreducible polynomials over F and $c \in F$. Compare it with the prime factorisation of integers larger than 1.
- 2. If an irreducible polynomial p in F divides $f_1 \times \cdots \times f_n$, a product of polynomials in F[x], then one f_i , $1 \le i \le n$ is divisible by p. Compare it with the fact that when a prime p|mn, then either p|m or p|n.

Proposition 8. The quotient ring F[x]/(f) is a field if and only if f is irreducible in field F. QED.

Proof: It is clear that the ring is commutative and it has the multiplicative identity element [1] = 1 + (f). So this is a field if all non-zero elements are invertible and it does not degenerate i.e. $[0] \neq [1]$.

 (\Leftarrow) : f is irreducible.

Let $[k] \neq [0]$ in F[x]/(f). As $[k] \neq [0]$, k is not divisible by f. So gcd(k, f) = 1and by the Bezout's identity, there are polynomials $u, v \in F[x]/(f)$ such that uf + vk = 1. As $uf \in (f) = [0]$, we have [v][k] = [vk] = [1]. So [v] is inverse of [k].

 (\Rightarrow) : f is reducible.

If f is a constant polynomial, there are two possibilities,

(i) f = 0, in that case F[x]/(0) is isomorphic to F[x] as for all $g \in F[x]$, g + (0) is identified with g itself.

(ii) $f = c \neq 0$, in that case F[x]/(c) has only one element as $(c) = \{cg(x) : g(x) \in F[x]\}$ and for each $g(x) \in F[x]$, $cc^{-1}g(x) = g(x)$. In none of there cases F[x]/(f) is a field.

If f = gh, where g, h are not constants and deg(g), deg(h) are less than deg(f). So f does not divide either g or h implies that [g] or [h] are not equal to [0]. But [g][h] = [gh] = [f] = [0]. So F[x]/(f) has zero divisors and it is not a field. QED.

Compare the proposition with $\mathbb{Z}/(p) = \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}_p$, which is a field \mathbb{F}_p when p is a prime. Now we shall look at the last result more closely. Let $f \in F[x]$ and $f \neq 0$. The ring of residue classes modulo (f) is F[x]/(f), where $(f) = \{f(x)h(x) : h(x) \in F[x]\}$. A residue class [g] = g + (f). Equality of two residue classes is defined as usual: [g] = [h], if g + (f) = h + (f) i.e $g(x) + f(x)f_1(x) = h(x) + f(x)f_2(x)$, for some $f_1(x), f_2(x) \in R[x]$. So, f|(g-h)i.e. $g \equiv h \pmod{f}$.

Each residue class [g] has a representative $r \in [g]$ so that $g \equiv r \pmod{f}$ and $\deg(r) < \deg(f)$. It is clear that r is the remainder when g is divided by f i.e. g = fq + r. If there is another r' satisfying $g \equiv r' \pmod{f}$ and $\deg(r') < \deg(f)$, then $r \equiv r' \pmod{f}$ i.e. f|(r - r'), but that is impossible unless r = r'. This gives us the distinct representative r of an equivalence class of F[x]/(f). So an equivalence class is of the form r + (f), where $r \in F[x]$ and $\deg(r) < \deg(f)$. Compare it with the equivalence classes of \mathbb{Z} modulo $n, [0], \cdots, [n-1]$.

In particular if we take $F = \mathbb{F}_p$ and $\deg(f) = n$, then the number of polynomials of degree $\leq (n-1)$ are p^n as every coefficient of $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ can take p possible values. So the number of elements of $\mathbb{F}_p[x]/(f)$ is p^n , and this is a filed.

We already know that any finite field can be of size p^n and here is a field of size p^n . So there is a connection. But the question is whether there is an irreducible polynomial of degree n for every positive integer n? How do we get an irreducible polynomial of a certain degree if it exists? For finite field and lower degree we may enumerate.

Example 20. Let us find out the irreducible polynomials of degree 3 over \mathbb{F}_2 . Any polynomial of degree 3 is of the form $x^3 + a_2x^2 + a_1x + a_0$, where $a_0, a_1, a_2 \in \{0, 1\}$. So there are 8 possibilities. Again any reducible polynomial of degree

3 is of the form $(x+b)(x^2+b_1x+b_0)$ where $b, b_1, b_0 \in \{0, 1\}$. Following table computes them.

b	b_1	b_0	$(x+b)(x^2+b_1x+b_0)$
0	0	0	x^3
0	0	1	$x^{3} + x$
0	1	0	$x^3 + x^2$
0	1	1	$x^3 + x^2 + x$
1	0	0	same
1	0	1	$x^3 + x^2 + x + 1$
1	1	0	same
1	1	1	$x^3 + 1$

So there are two irreducible polynomials of degree 3 over \mathbb{F}_2 . They are $x^3 + x^2 + 1$ and $x^3 + x + 1$.

Example 21. The equivalence classes of $\mathbb{F}_2[x]/(f)$, where $f = x^3 + x^2 + 1$, are $\overline{[0] = 0 + (f)}$, [1] = 1 + (f), [x] = x + (f), [x + 1] = x + 1 + (f), $[x^2] = x^2 + (f)$, $[x^2 + 1] = x^2 + 1 + (f)$, $[x^2 + x] = x^2 + x + (f)$, $[x^2 + x + 1] = x^2 + x + 1 + (f)$.

The addition and multiplication tables can be constructed following usual rules e.g.

 $\begin{array}{l} (i) \ [x^2] + [x^2 + x + 1] = (x^2 + (f)) + (x^2 + x + 1 + (f)) = x + 1 + (f) = [x + 1].\\ (ii) \ [x^2] \times [x^2 + x + 1] = (x^2 + (f)) \times (x^2 + x + 1 + (f)) = x^2 + x + (f) = [x^2 + x].\\ \text{The reason for the last one is } x^4 + x^3 + x^2 = xf(x) + x^2 + x. \end{array}$

Example 22. We take a simpler example. Take the irreducible polynomial $\overline{f(x)} = x^2 + x + 1$ over \mathbb{F}_2 of degree-2. The elements of the quotient field are [0] = 0 + (f), [1] = 1 + (f), [x] = x + (f), and [x+1] = x + 1 + (f). The addition and multiplication tables are as follows:

+	[0]	[1]	[x]	[x + 1]	×	0	1	x	x + 1
0	0	1	x	x+1	0	0	0	0	0
1	1	0	x + 1	x	1	0	1	x	x + 1
x	x	x + 1	0	1	x	0	x	x + 1	1
x + 1	x + 1	x	1	0	x + 1	0	x + 1	1	x

As an example,

$$[x] \times [x+1] = (x+(f))(x+1+(f)) = x^2 + x + (f) = 1 + (f) = [1].$$

The table is same as what we constructed earlier.

1.4 Extension Field

We know that given a field F, a subset K of F is called a subfield of F, if K is a field under the operations of F. If $K \neq F$, then K is a proper subfield of F. The field F is known as an extension of K and is denoted by F/K. A field is called a prime field if it does not have any proper subfield. We already know that for each prime p, \mathbb{F}_p is a prime field.

<u>Definition 10</u>: Let K be a subfield of F and $M \subseteq F$. The smallest subfield of F containing both M and K is the extension field of K obtained by adjoining M. It is denoted by K(M). If $M = \{\alpha\}$, then we write $K(\alpha)$ and it is called a simple extension of K, where α is known as the defining element of $K(\alpha)$ over K.

Viewing F as a vector space over K, the dimension of F is denoted by [F:K]. It is called the degree of extension. If the degree of extension or the dimension of F over K is finite, then it is called a finite extension.

If an element $\alpha \in F$ is a root of a polynomial equation $a_0 + a_1 x + \cdots + a_n x^n = 0$, where $a_i \in K$ and not all a_i 's are zeros, then we say that α is algebraic over K. An extension L of K is called algebraic over K, if all elements of L are algebraic over over K.

Note that each element a of K is algebraic over K as it is a root of x - a = 0.

Example 23. We know that \mathbb{C} is an extension of \mathbb{R} , and \mathbb{R} is an extension of \mathbb{Q} .