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1 Finite Fields

1.1 Introduction

An integral domain is a commutative ring with identity where 1 6= 0 and a×b = 0
implies that either a = 0 or b = 0. The set of integers, Z, is an integeral domain.
A field is a commutative ring with identity where every non-zero element is
invertible. A finite field has finite number of elements e.g. Fq is a field with q
elements1. It is often called a Galois field and GF (q) is also used as a notation.
It is known that (Zp,+p,×p, 0, 1) is a field if p is prime2. This is a Galois field
Fp of order p.

Example 1. The set F2 = {0, 1} under modulo 2 addition and multiplication is
a field.
In fact for every positive integer n and every prime p, there is a field with pn

elements. We start with a few definitions.
Let R be a ring with identity. There is a map Z → R such that 0 7→ 0R,

the additive identity of R, 1 7→ 1R, the multiplicative identity of R. If n > 1,

n 7→ nR =

n
︷ ︸︸ ︷

1R + · · ·+ 1R, and if n < 0, then n 7→ nR = −(−n)R, where the
inner minus is on integer n and the outer minus is for the additive inverse in R.
If there is no ambiguity, we shall use n for nR.
Definition 1: In a ring R, the smallest positive integer n, if it exists, is called
the characteristic of R, char(R), if 1R + · · ·+ 1R

︸ ︷︷ ︸

n

= n × 1R = 0. If there is no

such n, then char(R) = 0.

Example 2. Char(Zn) = n, for a positive integer n > 1 and Char(Z) = 0
Proposition 1. If D is an integral domain where Char(D) > 0, then Char(D)
is a prime number. A finite integral domain(field) D has a prime characteristic.
QED.

Proof: Let Char(D) = n > 0 be a composite number, so n = pq, where
1 < p, q < n. But then we have

0 = n×1 = (pq)×1 =

pq
︷ ︸︸ ︷

1 + · · ·+ 1 =

q
︷ ︸︸ ︷

p
︷ ︸︸ ︷

1 + · · ·+ 1+ · · ·+

p
︷ ︸︸ ︷

1 + · · ·+ 1 =

q
︷ ︸︸ ︷

pF + · · ·+ pF

Now pD · (

q
︷ ︸︸ ︷

1 + · · ·+ 1) = pD · qD. But an ntegral domain does not a have a
zero divisor3, so either pD = 0 or qD = 0. It contradicts our assumption that
1 < p, q < n.

In a finite integral domain 1D, 1D+1D = 2D, 1D+1D+1D = 3D, · · · cannot
be all distinct. So we have pD = qD, where p < q. By cancelling p elements we
get (q − p)D = 0. So the characteristic is positive and we already have proved
that it is a prime. QED.

A subfield F ′ of a field F is defined in the usual way: F ′ ⊆ F and F ′ is a
field under the operations of F restricted to F ′. It is not difficult to prove that
intesection of subfields will form a subfield.

1We shall prove that all fields with q elements are isomorphic.
2(Zp,+p,×p, 0, 1) is a commutative ring with identity. And for all a ∈ Zp \ {0}, ax = 1

has a solution in Zp as ax ≡ 1(mod p) has a solution.
3Let a, b ∈ F and a 6= 0 6= b, but ab = 0. Multiplying both sides by a−1 we get b = 0, a

contradiction.
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Let F be a field, it has the smallest subfield, the intersection of all subfields
of F . It is known as prime subfield of F .

If F and F ′ are two fields, then a map φ : F → F ′ is called a field homo-
morphism if φ(a+F b) = φ(a) +F ′ φ(b) and φ(a×F b) = φ(a)×F ′ φ(b).

Example 3. Let F and F ′ be two fields and the map φ : F → F ′ be a homo-
morphism. Following facts can be verified.

1. φ(0F ) = 0F ′ : φ(0F ) = φ(0F + 0F ) = φ(0F ) +F ′ φ(0F ). So φ(0F ) = 0F ′ .

2. φ(1F ) = 1F ′ : the justification is similar.

3. −φ(a) = φ(−a): 0F ′ = φ(0F ) = φ(a +F (−a)) = φ(a) +F ′ φ(−a). So
−φ(a) = φ(−a).

4. φ(a)−1 = φ(a−1): the justification is similar.

5. Im(φ) or φ(F ) is a subfield of F ′: let φ(a), φ(b) ∈ F ′ for some a, b ∈ F .
We know that φ(a) +F ′ φ(b) = φ(a +F b) ∈ φ(F ). Similarly it is possible
to show that φ(a) ×F ′ φ(b) ∈ φ(F ). So φ(F ) is closed under both the
operations. We have already seen that the identity elements of both the
operations are in φ(F ), and if φ(a) ∈ φ(F ), then its inverse is also there.
Associative and distributive laws are satisfied.

6. Let F ′′ ⊆ F ′ be a subfield of F ′. φ−1(F ′′) = {a ∈ F : ∃b ∈ F ′′, φ(a) = b}
is a subfield of F : as 0F ′ = φ(0F ) and 1F ′ = φ(1F ) are in F ′′, 0F , 1F ∈
φ−1(F ′′).
If a ∈ φ−1(F ′′), then φ(a) ∈ F ′′. So, φ(a)−1 ∈ F ′′. But we know that
φ(a−1) = φ(a)−1, so a−1 ∈ φ−1(F ′′).
Finally if a, b ∈ φ−1(F ′′), φ(a), φ(b) ∈ F ′′ and both φ(a) +F ′ φ(b) =
φ(a+F b) and φ(a)×F ′ φ(b) = φ(a×F ′ b) are in φ−1(F ′′). So a+F b and
a×F ′ b are in φ−1(F ′′).

Proposition 2. If F is a finite field so that char(F ) = p, then the prime
subfield of F is isomorphic to Fp. QED.

Proof: We define a map φ : Fp → F so that n 7→

n
︷ ︸︸ ︷

1 + · · ·+ 1. We observe that

φ(m+ n) =

m+n
︷ ︸︸ ︷

1 + · · ·+ 1 =

m
︷ ︸︸ ︷

1 + · · ·+ 1+

n
︷ ︸︸ ︷

1 + · · ·+ 1 = φ(m) + φ(n),

and also

φ(mn)

=

mn
︷ ︸︸ ︷

1 + · · ·+ 1

=

m
︷ ︸︸ ︷

n
︷ ︸︸ ︷

1 + · · ·+ 1+ · · ·+

n
︷ ︸︸ ︷

1 + · · ·+ 1

=

m
︷ ︸︸ ︷

φ(n) + · · ·+ φ(n)

= φ(n)(
︷ ︸︸ ︷

1 + · · ·+ 1)

= φ(n) · φ(m).

So the map φ is a homomorphism. We further show that φ is an injection
i.e. a monomorphism.
Assume that φ(a) = φ(b), where 0 ≤ a < b < p. Then we have c = b− a > 0.

φ(1) = φ(c · c−1) = φ(c) · φ(c−1)

= φ(b − a) · φ(c−1)

= (φ(b) + (−φ(a))) · φ(c−1)

= 0F · φ(c−1) = 0F .

But φ(1) = 1F 6= 0F - a contradiction. φ is an injection and the image of Fp in
F , φ(Fp) is a subfield of F .
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It is known that Fp does not have any proper subfield and is its own prime. So
φ(Fp), is the smallest or prime subfield of F which can be identified with Fp.
QED.

1.2 Vector Space

We have not seen so far any finite field other than Fp. We introduce the concept
of vector space and claim that a field F is a vector space over its subfield.
The concept of vector space is a generalisation of the collection of Euclidean
vectors over Rn. Following is the formal definition.
Definition 2: A vector space over a field F is a set V equipped with the binary
opeartion ”addition” defined on its elements and multiplication by the elements
of F (known as scalar), satisfying the following set of axioms:

1. V is a commutative group under vector addition.

2. The scalar multiplication is distributed over vector addition, i.e. for all
u, v ∈ V and for all a ∈ F , a(u+ v) = au+ av.

3. The vector multiplication is distributed over scalar addition, i.e. for all
u ∈ V and for all a, b ∈ F , (a+ b)u = au+ av.

4. For all u ∈ V and for all a, b ∈ F , (ab)u = a(bu).

5. For all u ∈ V , 1u = u.

Elements of a vector space are called vectors. The identity element of vector
addition is known as the null vector 0.

Example 4. Following are a few examples of vector spaces.

1. 2, 3, or n dimensional Euclidean vector spaces over R. The addition of
two vectors and multiplication by scalar are as usual.

2. Given any field F and a positive integer n, the collection of n-tuples of
elements of F , Fn, is a vector space over F under the following definition
of addition and scalar multiplication:
Let (a1, · · · , an), (b1, · · · , bn) ∈ Fn and c ∈ F .

• (a1, · · · , an) + (b1, · · · , bn) = (a1 + b1, · · · , an + bn), and

• c(a1, · · · , an) = (ca1, · · · , can).

By this definition C is a vector space over R.

3. The collection of all functions from a non-empty set A to F , where F is
a field, is a vector space over F where addition and scalar multiplication
are defined as follows:
Let f, g ∈ FA and c ∈ F .

• (f + g)(a) = f(a) + g(a), for all a ∈ A, and

• (cf)(a) = c(f(a)), for all a ∈ A.

4. All 2× 2 matrices over R, M2(R), is a vector space.

5. If L be a subfield of F , then F may be viewed as a vector space over L in
a natural way under the addition and multiplication of the field F .

Definition 3: Let V be a vector space over the field F and U ⊆ V . The subset
U is called a subspace of V if it satisfies the following conditions:

1. U is a subgroup of V ,

2. if u ∈ U , then for all a ∈ F , au ∈ U .
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Example 5. In R
3, vectors lying on a plane passing through the origin forms

a subspace of R3. Similarly vectors along a line passing through origin also
forms a subspace of R3. Finally the null vector (0, 0, 0)T (origin) alone forms a
subspace.

In connection to the Euclidean space R
3, we know that there are three

unit vectors u = (1, 0, 0)T , v = (0, 1, 0)T , w = (0, 0, 1)T . Any vector a ∈ R
3

can be expressed as a linear combination of the unit vectors, a = (x, y, z)T =
xu + yv + zw, where x, y, z ∈ R, are known as the coordinates of a. The set
{u, v, w} is called a basis of the vector space R3.
We also know that the basis set is not unique and any set of three non-coplanar
vectors can form a basis for R3. In general we have the following definitions.
Definition 4: Let V be a vector space over a field F and let u1, · · · , un ∈ V . A
linear combination of these n vectors is a1u1+ · · ·+anun, where a1, · · · , an ∈ F .
The linear combination is called trivial if a1 = · · · = an = 0 ∈ F ; otherwise it is
called nontrivial.
Let U = {u1, · · · , un} ⊆ V . U is called linearly dependent if there is a nontrivial
linear combination that gives the null vector (0). Otherwise the set is called
linearly independent.

Example 6. In R3, u1 = (−1,−3,−1)T , u2 = (2,−2,−2)T , u3 = (−4, 0, 2)T are
linearly dependent as

2(−1,−3,−1)T + (−3)(2,−2,−2)T + (−2)(−4, 0, 2)T = (0, 0, 0).

But, (1, 2,−1)T , (1,−1, 2)T and (−1, 3,−1) are linearly independent. We can
show this by proving that x(1, 2,−1)T +y(1,−1, 2)T+z((−1, 3,−1)) = (0, 0, 0)T

does not have any solution other than (0, 0, 0).
Proposition 3. Let V be a vector space over the field F . The vectors
u1, · · · , un ∈ V are linearly dependent if and only if one of them is a non-trivial
linear combination of the other. QED.

Proof: Without any loss of generality we assume that u1 = a2u2+· · ·+anun. So
we have u1−a2u2−· · ·−anun = 0, a non-trivial linear combination {u1, · · · , un}
gives the null vector.
In the other direction we assume that a1u1 + · · ·+ anun = 0. One of ai 6= 0. So
we have ui =

−a1

ai

u1 + · · ·+ −ai−1

ai

ui−1 +
−ai+1

ai

ui+1 + · · ·+ −an

ai

un. QED.
A set U of vectors is linearly dependent does not mean that every element of U
can be expressed as a linear combination of the other.

Example 7. Consider u1 = (1, 2, 3)T , u2 = (2, 4, 6)T and u3 = (1, 1, 1). They
are linearly dependent as 2u1 − u2 = 0. But u3 cannot be expressed as linear
combination of u1 and u2 as they are along the same line, but the line of support
of u3 is different.
Definition 5: Let V be a vector space over the field F and S ⊆ V . The linear
span of S, denoted by < S >, is defined as follows:

< S >=

{
n∑

i=1

aiui : n ∈ N, ai ∈ F, ui ∈ S

}

.

Definition 6: A vector space V over a field F is said to be finite dimensional
if there is a finite subset S of V so that < S >= V . Otherwise it is infinite
dimensional.

Example 8. We consider R[X ], the polynomial functions of single variable on
the real field. It is not difficult to check that R[X ] is a vector space over R. But
this space cannot be spanned by any finite set. One set that spans this space
is S = {xn : n = 0, 1, 2, · · · }. The set S may be viewed as a collection of ei’s,
i ∈ N, where ei = (ai)

∞
i=1 such that aj = 1 if i = j but aj = 0 if i 6= j. Any

polynomial can be written as a linear combination of finite number of elements
of S. So it is an infinite dimentional vector space.
Definition 7: Let V be a finite dimensional vector space over the field F . A
set B = {e1, · · · , en} ⊂ V is called a basis of V if the vectors of B are linearly
independent and < B >= V .
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It can be proved that every vector space finite or infinite dimensionsl has a
basis. The proof requirs Zorn’s lemma4, a variation of Axiom of Choice5. The
basis may be uncountably infinite.

Example 9. Consider the vector space R
∞ = {(ai)

∞
i=1 : ai ∈ R}. It cannot

have a countable basis(why?).
Proposition 4. If a vector space V over the field F is spanned by m vec-
tors, then any set of n vectors of V , where n > m, are linearly dependent. QED.

Proof: Let V =< {u1, · · · , um} > and v1, · · · , vn ∈ V . So we have

v1 = a11u1 + · · ·+ a1mum

...
...

...

vn = an1u1 + · · ·+ anmum

We consider the following system of m homogeneous equations:

a11x1 + a21x2 + · · ·+ an1xn = 0

...
...

...

a1mx1 + a2mx2 + · · ·+ anmxn = 0

The number of unknowns n in these equations is greater than the number of
equations m It is known that there is a non-null solution of this system. Let
the solution be (b1, · · · , bn).
So we have

b1v1 + · · ·+ bnvn = b1(a11u1 + · · ·+ a1mum) + · · ·+ bn(an1u1 + · · ·+ anmum)

= u1(a11b1 + · · ·+ an1bn) + · · ·+ um(a1mb1 + · · ·+ anmbn)

= 0.

So v1, · · · , vn are linearly dependent. QED.

Proposition 5. All bases of a finite-dimensional vector space V over a field
F contains same number of vectors. QED.

Proof: Let B1 and B2 be two bases of V with n1 and n2 vectors so that n2 > n1.
But according to the previous proposition n2 vectors of B2 are linearly depen-
dent. This is contradictory. QED.

The size of a basis of a finite-dimensional vector space is known as dimension
of the vector space, dim V .

We use the concept of vector space to characterise the size of a finite field.
We know that a field F may be viewed as a vector space of its subfield K. Let
char(F ) = p, a prime, and |F | > p. We know that Fp is isomorphic to the prime
subfield of F . So F may be viewed as a vector space over Fp. Let the dimension
of F over Fp or the degree or [F : Fp] be n. We have the following proposition.
Proposition 6. If F is a finite field with char(F ) = p, then there is a positive
integer n such that |F | = pn. QED.

Proof: We know that [F : Fp] = n. So a basis of F is an n element subset
B = {u1, · · · , un} of F . Every element of v ∈ F can be expressed as a linear
combination a1u1 + · · ·+ anun = v, where ai ∈ Fp. There are p elements in Fp,
so we have pn linear combinations6. So there are pn elements in F . QED.

4Zorn’s lemma is also known as Kuratowski-Zorn lemma. Let P be a collection of subsets
of some set A. P has the property that whenever there is a chain of subsets A1 ⊂ A2 ⊂ · · · in
P , then their union ∪Ai is in P . According to Zorn’s lemma, P has a maximal element Am

i.e. there is no B ∈ P such that Am ⊂ B.
5There are different versions of this axiom of set theory. It assumes that for evey indexed

family of non-empty sets {Ai}i∈I , there is an indexed family of elements {ai}i∈I such that
ai ∈ Ai for all i ∈ I.

6Two linear combinations cannot give the same element of F . If a1u1 + · · · + anun =
b1u1 + · · · + bnun, then (a1 − b1)u1 + · · · + (an − bn)un = 0. But that is impossible as
u1, · · · , un are linearly independent.
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So the number of elements of any finite field can be a power of some prime.

Example 10. We consider the case of F22 . We know that F2 is embedded in
F22 . So we take 0 and 1 with their usual meaning. Let a be another element,
so a+ 1 is the fourth element to make the set closed under addition. We know
that char(F22) = 2 i.e. 1 + 1 = 0, then for all x ∈ F22 , x + x = 0. We also
cannot have a · a = a or a(a + 1) = a + 1, as that implies a = 1. a(a+ 1) = a
implies that a = 0. So we have the following addition and multiplication tables.

+ 0 1 a a+ 1
0 0 1 a a+ 1
1 1 0 a+ 1 a
a a a+ 1 0 1

a+ 1 a+ 1 a 1 0

× 0 1 a a+ 1
0 0 0 0 0
1 0 1 a a+ 1
a 0 a a+ 1 1

a+ 1 0 a+ 1 1 a

What can be a basis for F22? Clearly 0 cannot be there in the basis as {0, u}
is always linearly dependent: c · 0+ 0 ·u = 0, where c 6= 0. We may have {1, a}.

For a prime p, GF (p), Zp and Fp means the same field. But if n = pk, where
p is a prime and k > 1, then Zn is algebraically different from GF (n) or Fn,
where Zn is not a field, has pk − (φ(pk) + 1) = pk − pk + pk−1 − 1 = pk−1 − 1
zero divisors.

Example 11. In Z4 we have 2×4 2 = 0. But the multiplication table of F4 does
not have any such element. have any such

1.3 Polynomials

A polynomial over a ring R is a function f : R → R of the form f(x) =
∑n

i=0
aix

i = a0 + aix+ · · ·+ anx
n, where ai ∈ R.

If all ai’s are 0, then it is called a zero polynomial, and is denoted by 0. If the
leading coefficient an 6= 0, then n is called the degree of f , denoted by deg(f).
By convention the degree of the zero polynomial is −∞. A polynomial f is called
a constant polynomial if dig(f) is 0 or −∞. If the ring R has the multiplicative
identity element 1, and an = 1, then f(x) is called a monic polynomial.
Two polynomials f(x) =

∑n
i=0

aix
i and g(x) =

∑n
i=0

bix
i are said to be equal

if and only if ai = bi for all i = 0, · · · , n.
Polynomial f and g can be added to get h(x) =

∑n

i=0
cix

i, where ci = ai+bi for
all i = 0, · · · , n. We can pad a polynomial with zero coefficients for the purpose
of comparison and addition. But normally terms with zero coefficients are not
written explicitly.

Example 12. Let f(x) = 2x2 − 5 and g(x) = 7x3 + 5x + 6. The sum h(x) =

f(x)+ g(x) = (0+ 7)x3+(2+ 0)x2+(0+ 5)x+(−5+ 6) = 7x3 +2x2+5x+1.
Product of two polynomials, f(x) =

∑n

i=0
aix

i and g(x) =
∑m

i=0
bix

i is

h(x) = f(x)g(x) =

m+n∑

k=0

ckx
k, where ck =

i+j=k
∑

0≤i≤n∧0≤j≤m

aibj .

Example 13. Let f(x) = 2x2 − 5x and g(x) = 7x3 + 2x2 + 6. The product

h(x) = (2× 7)x5 + (2× 2+ 7× (−5))x4 + (−5× 2)x3 + (2× 6)x2 +(−5× 6)x =
14x5 − 31x4 − 10x3 + 12x2 − 30x.

Given the above definitions, it is clear that collection of all polynomials over
R, denoted by R[x], forms a ring.

Example 14. Let R = Z6 and f(x) = 2x2 + 1 and g(x) = 4x2 + 3x. So

f(x) + g(x) = (2 + 4)x2 + 3x+ 1 = 3x+ 1.
If we take h(x) = 3x2, then f(x)h(x) = 3x2. Finally if we take k(x) = 2x2, then
h(x)k(x) = 0, the product of two non-zero polynomial is a zero polynomial. So
it is not an integral domain.
We have deg(f + g) ≤ max(deg(f) deg(g)), and deg(fg) ≤ deg(f)+ deg(g).

R[x], the ring of polynomials over R, is commutative, if R is commutative.
R[x] has the identity element 1 if R is a ring with identity. We are interested
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about polynomials over a field, where every non-zero element is invertible and
there is no zero-divisor.

Let F be a field. Polynomial division over F [x] is similar to integer division.
The division algorithm is as follows:
If g, f ∈ F [x] are such that g 6= 0, then there exists q, r ∈ F [x], such that
f(x) = g(x)q(x) + r(x), where deg(r) < deg(g). The polynomial g divides the
polynomial f if r = 0 i.e. f = gq.

Example 15. Let the field be F7 and g(x) = 3x2 +2, f(x) = 2x5 +4x3 +3x+1
be polynomials over F7. We do the usual long division.
The first term of the quotient is 3x3 as 3x2 × 3x3 = 2x5. The first partial
remainder is r1(x),

r1(x) = f(x)− 3x3(3x2 + 2)

= 2x5 + 4x3 + 3x+ 1− (2x5 + 6x3)

= 2x5 + 4x3 + 3x+ 1 + (−2)x5 + (−6)x3

= 5x3 + 3x+ 1.

The second term of the quotient is 4x as 4x× 3x2 = 5x3. The final remainder
is r(x),

r(x) = r1(x) − 4x(3x2 + 2)

= 5x3 + 3x+ 1− (5x3 + x)

= 5x3 + 3x+ 1 + (−5)x3 + (−1)x

= 2x+ 1.

So we have

2x5 + 4x3 + 3x+ 1 = (3x2 + 2)(3x3 + 4x) + (2x+ 1).

Given a ring R and S ⊆ R, S is a subring of R, if S is an additive subgroup
and is closed under multiplication. If the ring has an identity element 1, the
conditions for S to be a subring are (i) −1 ∈ S, (ii) S is closed under addition,
and (iii) S is closed under multiplication7. A subring I of R is an ideal, if for all
a ∈ I and all r ∈ R, ar and ra ∈ I. We also know that for a commutative ring
R with identity, the smallest ideal that contains a ∈ R is (a) = {ar : r ∈ R}.
This is called the principal ideal generated by a.

Example 16. Consider Z the ring of integers. Take 105 ∈ Z. The ideals
that contain 105 are {· · · ,−6,−3, 0, 3, 6, · · · }, {· · · ,−10,−5, 0, 5, 10, · · ·} and
{· · · ,−14,−7, 0, 7, 14, · · ·}, Z.
But the smallest one is (105) = {· · · ,−210,−105, 0, 105, 210, · · ·}, the principal
ideal generated by 105.

Definition 8: An integral domain D where every ideal is a principle ideal is
called a principle ideal domain (PID).

Example 17. Z is a PID where every ideal is of the form nZ, n ∈ Z.
An ideal I over the ring R defines a partition as it is a subgroup (normal)

under addition. The equivalence classes are called residue classes modulo I and
are cosets of I. For each element a ∈ R, an equivalence class [a] = a+ I. Two
elements b, c ∈ R are equivalent modulo I if they belong to the same equivalence
class say [a] i.e. b = a + p and c = a + q, where p, q ∈ I. This implies that
b − c = p − q ∈ I8. It is denoted as b ≡ c(mod I). The equivalence classes
modulo n over Z are essentially equivalences classes modulo the ideal nZ.

We can naturally define addition and multiplication operations on the quo-
tient set: (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = ab + I. So the
quotient set is also a ring called quotient ring R/I.

7Let a ∈ R, then (−1)a = −a ∈ R and a + (−1)a = a − a = 0 ∈ R. For a finite ring,
closure under addition and multiplication is enough to form a subring.

8In multiplicative notation bc−1 ∈ I.
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On Z the quotient ring (commutative with identity) modulo n is Z/nZ but we
also use the old notation Zn

Proposition 7. If F is a field, then F [x] is a principal ideal domain. For
every ideal I, either I = (0) or there is a unique monic polynomial f ∈ F [x]
such that I is generated by f . QED.

Proof: We have (0), the zero-polynomial.
If I 6= {0}, then there is a non-zero polynomial h(x) of minimal degree in I. If
h(x) is monic, then we take f(x) = h(x), otherwise we take f(x) = a−1h(x),
where a is the leading coefficient of h(x). So f is monic and is in I.
Let g ∈ I, by division algorithm we have q, r ∈ F [x] such that g = fq + r,
where deg(r) < deg(f). But then r = g − fq, implies that r ∈ I, which is a
contradiction. So r = 0 and f |g i.e. (f) = I.
To prove the uniqueness we assume that I = (f ′) where f ′ ∈ I and is monic. So
we have f = pf ′ = p(p′f) = (pp′)f i.e. pp′ = 1. So both p and p′ are constant
polynomials. But both f and f ′ are monic, so p = 1 = p′, implies that f = f ′.
QED.

We define GCD of two polynomials over a field F . Let f, g ∈ F [x] such that
both are not equal to 0. There is a unique monic polynomial d such that (i)
d divides both f and g, (ii) any polynomial c ∈ F [x], dividing both f and g,
divides d. We also have the Bezout’s identity, d = uf + vg, where u, v ∈ F [x].

Example 18. Consider f(x) = 4x7 + 2x6 + 3x4 + 4x2 + 2x + 2 and g(x) =

x6 + 3x5 + x4 + x3 + 2x2 + 3 over F5. We want to compute gcd(f, g) = d (say).
We rewrite f(x) = 4f ′(x), where f ′(x) = x7 + 3x6 + 2x4 + x2 + 3x+ 3. As d is
a monic polynomial, the gcd(f, g) = gcd(f ′, g). We divide f ′ by g and get

f ′(x) = g(x)(x) + r1(x), where

r1(x) = 4x5 + x4 + 3x3 + x2 + 3 = 4r′1(x), where

r′1(x) = x5 + 4x4 + 2x3 + 4x2 + 2.

In the second stage,

g(x) = r′1(x)(x + 4) + r2(x), where

r2(x) = 3x4 + 4x3 + x2 + 3x = 3r′2(x), where

r′2(x) = x4 + 3x3 + 2x2 + x.

In the third stage

r′1(x) = r′2(x)(x + 1) + r3(x), where

r3(x) = 2x3 + x2 + 4x+ 2 = 2r′3(x), where

r′3(x) = x3 + 3x2 + 2x+ 1.

Finally, r′3(x)|r
′
2(x), so the gcd(f, g) = x3 + 3x2 + 2x+ 1, and we have

gcd(f, g) = x3 + 3x2 + 2x+ 1

= r′3(x)

= 3r3(x), as (2)
−1 = 3 ∈ F5,

= 3(r′1(x)− r′2(x)(x + 1))

= 3(r′1(x)− 2(g(x)− r′1(x)(x + 4))(x+ 1)), as r′2(x) = 2r2

= 4(x+ 1)g(x) + r′1(x)(3 + (x+ 1)(x+ 4)).

= 4(x+ 1)g(x) + 4(f ′(x) − xg(x))(3 + (x+ 1)(x+ 4)), as r′1(x) = 4r1(x)

= (x2 + 2)f(x) + (x3 + x+ 4)g(x), as f ′(x) = 4f(x).

So the Bezout’s coefficients are, x2 + 2 and x3 + x+ 4.
Definition 9: A polynomial p of positive degree in F [x], where F is a field, is
called irreducible in F , if whenever p = qr and q, r ∈ F [x], then either q or r is
a constant polynomial.
An irreducible polynomial p is also known as prime in F [x].
It is important to mention the field while calling a polynomial irreducible.
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Example 19. The polynomial x2+1 is irreducible in R[x], but can be factorised

as (x+ i)(x− i) in C[x]. Similarly x2 − 2 is irreducible in Q[x] but not in R[x].
The polynomial x3 + x+ 1 is irreducible in F2.

We accept the following facts about polynomials over F [x], where F is a
field, without proof.

1. If f ∈ F [x] is of positive degree, then f = cpe11 · · · pekk , where p1, · · · , pk ∈
F [x] are irreducible polynomials over F and c ∈ F . Compare it with the
prime factorisation of integers larger than 1.

2. If an irreducible polynomial p in F divides f1 × · · · × fn, a product of
polynomials in F [x], then one fi, 1 ≤ i ≤ n is divisible by p. Compare it
with the fact that when a prime p|mn, then either p|m or p|n.

Proposition 8. The quotient ring F [x]/(f) is a field if and only if f is irre-
ducible in field F . QED.

Proof: It is clear that the ring is commutative and it has the multiplicative
identity element [1] = 1 + (f). So this is a field if all non-zero elements are
invertible and it does not degenerate i.e. [0] 6= [1].
(⇐): f is irreducible.
Let [k] 6= [0] in F [x]/(f). As [k] 6= [0], k is not divisible by f . So gcd(k, f) = 1
and by the Bezout’s identity, there are polynomials u, v ∈ F [x]/(f) such that
uf + vk = 1. As uf ∈ (f) = [0], we have [v][k] = [vk] = [1]. So [v] is inverse of
[k].
(⇒): f is reducible.
If f is a constant polynomial, there are two possibilities,
(i) f = 0, in that case F [x]/(0) is isomorphic to F [x] as for all g ∈ F [x], g+ (0)
is identified with g itself.
(ii) f = c 6= 0, in that case F [x]/(c) has only one element as (c) = {cg(x) :
g(x) ∈ F [x]} and for each g(x) ∈ F [x], cc−1g(x) = g(x).
In none of there cases F [x]/(f) is a field.
If f = gh, where g, h are not constants and deg(g), deg(h) are less than deg(f).
So f does not divide either g or h implies that [g] or [h] are not equal to [0]. But
[g][h] = [gh] = [f ] = [0]. So F [x]/(f) has zero divisors and it is not a field. QED.

Compare the proposition with Z/(p) = Z/pZ = Zp, which is a field Fp

when p is a prime. Now we shall look at the last result more closely. Let
f ∈ F [x] and f 6= 0. The ring of residue classes modulo (f) is F [x]/(f), where
(f) = {f(x)h(x) : h(x) ∈ F [x]}. A residue class [g] = g + (f). Equality
of two residue classes is defined as usual: [g] = [h], if g + (f) = h + (f) i.e
g(x)+f(x)f1(x) = h(x)+f(x)f2(x), for some f1(x), f2(x) ∈ R[x]. So, f |(g−h)
i.e. g ≡ h(mod f).
Each residue class [g] has a representative r ∈ [g] so that g ≡ r(mod f) and
deg(r) < deg(f). It is clear that r is the remainder when g is divided by f
i.e. g = fq + r. If there is another r′ satisfying g ≡ r′(mod f) and deg(r′) <
deg(f), then r ≡ r′(mod f) i.e. f |(r − r′), but that is impossible unless r = r′.
This gives us the distinct representative r of an equivalence class of F [x]/(f).
So an equivalence class is of the form r + (f), where r ∈ F [x] and deg(r) <
deg(f). Compare it with the equivalence classes of Z modulo n, [0], · · · , [n− 1].

In particular if we take F = Fp and deg(f) = n, then the number of polyno-
mials of degree ≤ (n−1) are pn as every coefficient of a0+a1x+ · · ·+an−1x

n−1

can take p possible values. So the number of elements of Fp[x]/(f) is pn, and
this is a filed.

We already know that any finite field can be of size pn and here is a field
of size pn. So there is a connection. But the question is whether there is an
irreducible polynomial of degree n for every positive integer n? How do we get
an irreducible polynomial of a certain degree if it exists? For finite field and
lower degree we may enumerate.

Example 20. Let us find out the irreducible polynomials of degree 3 over F2.

Any polynomial of degree 3 is of the form x3+a2x
2+a1x+a0, where a0, a1, a2 ∈

{0, 1}. So there are 8 possibilities. Again any reducible polynomial of degree
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3 is of the form (x + b)(x2 + b1x + b0) where b, b1, b0 ∈ {0, 1}. Following table
computes them.

b b1 b0 (x+ b)(x2 + b1x+ b0)
0 0 0 x3

0 0 1 x3 + x
0 1 0 x3 + x2

0 1 1 x3 + x2 + x
1 0 0 same
1 0 1 x3 + x2 + x+ 1
1 1 0 same
1 1 1 x3 + 1

So there are two irreducible polynomials of degree 3 over F2. They are x3+x2+1
and x3 + x+ 1.

Example 21. The equivalence classes of F2[x]/(f), where f = x3 + x2 + 1, are

[0] = 0 + (f), [1] = 1 + (f), [x] = x+ (f), [x+ 1] = x+1+ (f), [x2] = x2 + (f),
[x2 + 1] = x2 +1+ (f), [x2 + x] = x2 + x+ (f), [x2 + x+ 1] = x2 + x+ 1+ (f).

The addition and multiplication tables can be constructed following usual
rules e.g.
(i) [x2] + [x2 + x+ 1] = (x2 + (f)) + (x2 + x+ 1+ (f)) = x+ 1+ (f) = [x+ 1].
(ii) [x2]× [x2 +x+1] = (x2+(f))× (x2 +x+1+(f)) = x2+x+(f) = [x2+x].
The reason for the last one is x4 + x3 + x2 = xf(x) + x2 + x.

Example 22. We take a simpler example. Take the irreducible polynomial

f(x) = x2 + x + 1 over F2 of degree-2. The elements of the quotient field are
[0] = 0+(f), [1] = 1+(f), [x] = x+(f), and [x+1] = x+1+(f). The addition
and multiplication tables are as follows:

+ [0] [1] [x] [x+ 1]
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

As an example,

[x]× [x+ 1] = (x+ (f))(x+ 1 + (f)) = x2 + x+ (f) = 1 + (f) = [1].

The table is same as what we constructed earlier.

1.4 Extension Field

We know that given a field F , a subset K of F is called a subfield of F , if K
is a field under the operations of F . If K 6= F , then K is a proper subfield of
F . The field F is known as an extension of K and is denoted by F/K. A field
is called a prime field if it does not have any proper subfield. We already know
that for each prime p, Fp is a prime field.
Definition 10: Let K be a subfield of F and M ⊆ F . The smallest subfield of
F containing both M and K is the extension field of K obtained by adjoining
M . It is denoted by K(M). If M = {α}, then we write K(α) and it is called a
simple extension of K, where α is known as the defining element of K(α) over
K.

Viewing F as a vector space over K, the dimension of F is denoted by
[F : K]. It is called the degree of extension. If the degree of extension or the
dimension of F over K is finite, then it is called a finite extension.
If an element α ∈ F is a root of a polynomial equation a0+a1x+ · · ·+anx

n = 0,
where ai ∈ K and not all ai’s are zeros, then we say that α is algebraic over K.
An extension L of K is called algebraic over K, if all elements of L are algebraic
over over K.
Note that each element a of K is algebraic over K as it is a root of x− a = 0.

Example 23. We know that C is an extension of R, and R is an extension of Q.
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