
School of Electrical Sciences
IIT Bhubaneswar

Programming and Data Structure

Instructor: P Bera & Goutam Biswas Spring Semester 2015-2016

1 Rooted Tree and Binary Tree

1.1 Rooted Tree

Definition 1: A tree is a non-empty finite set T where

1. there is a designated element r called the root.

2. The the set T \{r}, if non-empty, is partitioned in disjoint subsets T1, · · · , Tk.

3. Each Ti, i = 1, · · · , k is a tree, known as a subtree of T .

It is clear that the definition is recursive. A tree may be drawn as a connected
acyclic graph with the root at the top (convention). There are different terms
associated with a rooted-tree T . They are defined as follows:
Definition 2:

1. Elements of a tree are called nodes. Information is stored in nodes, when
a rooted tree is used as a data structure.

2. Each node has 0 or any finite number of subtrees. The number of subtrees
of a node is called its degree.

3. A node is called a leaf node if its degree is 0. Other nodes are non-leaf or
internal nodes.

4. Each subtree of the root r of T is also a tree. So each of them has its root.
These are the children of r, and r is the parent of these subtree roots.
The root r does not have any parent and a leaf node does not have any
children.

5. Each child node is logically connected to its parent. This connection is
called the edge or link between the parent and the child. These edges are
the edges of the acyclic graph of the tree.

6. Children of the same parent are siblings.

7. All the nodes on the path (following the edges) from the root r to any
node p in T are the ancestors of p.

8. The degree of a tree is the maximum degree of any node in the tree.

9. The level or depth of the root r is 1 (some people take it as 0). If the level
of a node p in a tree is l, then the level of its children (if any) is l + 1.

10. The height (h) or depth of a tree is the value of the maximum level of any
node of the tree.

Ex 1.

1

1. If a tree T has n nodes, then there are n− 1 edges.

2. If a tree T has n nodes, the minimum number of leaf nodes is 1.

Proof:

1. The proof is by induction on n.
Basis: It is true for n = 1 as there is no child and so there is no edge.
Induction & Hypothesis: Assume that the proposition is true for n. The
(n+ 1)th node is connected to the tree by an edge. So it is true for n+ 1.

2. There are n− 1 edges, each age is connected to an internal node. So there
can at most be n− 1 internal nodes and only one leaf node.

QED.

1.2 Binary Tree

Binary tree is a rooted tree where the maximum degree of any node is 2. But
there is a small difference in the definition of a binary tree.
Definition 3: A binary tree is a finite set of nodes. If it is non-empty it has an
element called root and two disjoint subtrees known as left subtree and right
subtree.

So a binary tree can be empty. It is known as a empty or null tree. In a
binary tree we differentiate between left and right subtrees. A binary tree may
be viewed as a graph or may be written as a 3-tuple,

(left-sub-tree, root, right-sub-tree).

We write a null tree as ‘⊥’.

Example 1.

1. ⊥, (⊥, 1,⊥), T1 = ((⊥, 2,⊥), 1,⊥), T2 = (⊥, 1, (⊥, 2,⊥)). Note that T1 6=
T2.

1

2

1

2

root root
T1 : T2 :

2. If we ignore the data, there is one null tree; one tree with a single node:
(⊥, d,⊥); two trees with two nodes: ((⊥, d,⊥), d,⊥) and (⊥, d, (⊥, d,⊥));
five trees with three nodes: (((⊥, d,⊥), d,⊥), d,⊥), ((⊥, d, (⊥, d,⊥)), d,⊥),
((⊥, d,⊥)), d, (⊥, d,⊥)), (⊥, d, ((⊥, d,⊥), d,⊥)), (⊥, d, (⊥, d, (⊥, d,⊥)))

2

d

d

d

d

d

d

d

d

d

d

d

d
d

d

d

root root root root

root

Ex 2.

1. Take the level of the root as 1 and prove that the maximum number of
nodes at level l is 2l−1.

2. Maximum number of nodes in a l level binary tree is 2l − 1.

3. Give a recursive definition of Bn, the number of binary trees of n nodes.

4. Let a binary tree has n0 number of leaf nodes and n2 number of nodes
with two children. Prove that n0 = n2 + 1.

Proof:

1. The proof is by induction on l.
Basis: There is one node (root) at level 1.
Hypothesis & Induction: There are 2l−1 nodes at level l. Two nodes can
be attached to each of them, so there are 2l nodes at level l + 1.

2. This is 1 + 2 + · · ·+ 2l−1 = 2l − 1.

3. B0 = 1, Bn =
∑

n−1
i=0 BiBn−i−1, where n ≥ 1. There are several formula

for Bn = 1
n+1

(

2n
n

)

=
(

2n
n

)

−
(

2n
n+1

)

= 2(2n−1)
n+1 Bn−1.

4. Let the tree has n1 number of nodes with one children. So the total
number of edges are n0 +n1 +n2 − 1. Counting in other way, the number
of edges are 2n2 + n1. Equating them we get n0 + n1 + n2 = 2n2 + n1,
implies the result.
Another way is to prove it by induction on n.
Basis (n = 1): One leaf node and no node of two children.
Hypothesis & Induction: Assume that the proposition be true for some k.
When we attach the next node there are two possibilities, (i) it is attached
to a leaf node - the number of leaf nodes and the number of nodes with
two children remain unchanged; (ii) it is attached to a node having one
child - this increases both the number of leaf nodes and the number of
nodes with two children by one.

QED.

Definition 4: A binary tree is said to be full if each node has either no children
or two children. Some authors use different definition for full binary tree.
An almost complete binary tree of level l is such that

1. If l = 1, then there is one node, the root.

3

2. If l > 1, then there are 2l−1 − 1 nodes upto level l − 1 (saturated).

3. Nodes at level l are filled from left to right.

Ex 3. Prove that in a full binary tree the number of nodes is odd. And if there
are n nodes, then n−1

2 nodes are internal and n+1
2 are leaf nodes.

Proof: Number of nodes start from 1 and increases by 2.
Proof by induction on n. If n = 1, there is no internal node and 1 leaf node. If it
is true for n nodes, then adding two nodes reduces one leaf node to an internal
node and adds two new leaf nodes. QED.

1.3 Representation of Binary Tree

An almost complete binary tree with n nodes can be stored in a 1-dimensional
array (index: {0, 1, · · · , n − 1}). The root is stored at index 0. If a node is
stored at index i, then

• if i = 0, it has no parent. Otherwise the index of the parent is ⌊ i−1
2 ⌋ i.e.

parent of node 5 and 6 is 2.

• If 2i + 1 < n, then the index of the left-child of i is 2i + 1. Similarly if
2i+ 2 < n, then the index of the right-child of i is 2i+ 2.

But the scheme is space inefficient if the tree is skewed. A skewed tree of n nodes
may have height n (root at height 1). But the previous scheme will use 2n−1 to
2n − 1 array locations. So a large number of locations will remain unused.

An alternate to this is a linked representation, which uses three essential
fields - data, a link to the root of the left subtree and a link to the root of the
right subtree. There may also be a link to the parent node.

root

1

2
3

4

5

6
7 0

4

3

6

1

2

7 0

5

This can be easily implemented using self-referencing structure of C lan-
guage.
struct binaryTreeNode {

int data ;

struct binaryTreeNode *leftChild, *rightChild /*, *parent*/ ;

} ;

typedef struct binaryTreeNode *binaryTree ;

4

1.4 Representation of Tree with degree k

We know that the degree of a rooted-tree is the maximum number of children
of any internal node. The structure of a node of a degree-k tree may have a
data field and k number of links to k child subtrees. If for a particular node the
number of subtrees are less than k, then some of the links may be null. But this
may be space inefficient if most of the nodes have smaller number of children
compared to the degree of the tree.
#define DEG 20

struct rootedTreeNode {

int data;

struct rootedTreeNode *children[DEG];

};

typedef struct rootedTreeNode *rootedTree;

An alternate representation of a degree-k tree uses a binary tree like repre-
sentation. The fields are - data, link to left-child and link to right-sibling.

root
4

11

10 1

2

8

7

5

9

6 3

4

2 7 11 9

10 8 1

6 3 5

root

struct rootedTree {

int data;

struct rootedTree *leftChild, *rightSibling;

};

typedef struct rootedTreeNode *rootedTree;

1.5 Axiomatic Definition of a Binary Tree (ADT)

T : The set of binary trees of element of type Item,
I : The set of values of type Item,
B : The set of Boolean values,
M : The set of Methods.

Syntax:

5

Init() −→ t : T

IsEmpty(t) −→ b : B

MakeTree(t1, v, t2) −→ t : T

LeftSubtree(t) −→

{

error if IsEmpty(t) = true
t′ : T otherwise

RightSubtree(t) −→

{

error if IsEmpty(t) = true
t′ : T otherwise

Root(t) −→

{

error if IsEmpty(t) = true
v : I otherwise

Axioms:

IsEmpty(Init()) = true

IsEmpty(MakeTree(t1 , v , t2)) = false

LeftSubtree(Init()) = error

RightSubtree(Init()) = error

Root(Init()) = error

LeftSubtree(MakeTree(t1 , v , t2)) = t1

RightSubtree(MakeTree(t1 , v , t2)) = t2

Root(MakeTree(t1 , v , t2)) = v

1.6 Traversal in Binary Tree

Visiting the nodes (data) of a binary tree and doing computation is an important
operation. An operation may be simply printing the data. If we decompose the
tree as l (left sub-tree), R (root), and r (right sub-tree), there are 3! = 6 possible
ways of visiting the nodes (traversals) - lRr, lrR, Rlr, Rrl, rlR, and rRl. But
if we decide that the left sub-tree will be visited before the right sub-tree, then
the first three are the only possibilities - lRr is called the inorder traversal, lrR
is the postorder traversal and Rlr is the preorder traversal.

1. lRr - Inorder traversal - perform inorder traversal on the left subtree,
compute on the root node (may be just print the data), perform inorder
traversal on the right subtree.

2. lrR - Postorder traversal - perform postorder traversal on the left subtree,
perform inorder traversal on the right subtree, then compute on the root
node.

3. Rlr - Preorder traversal - first compute on the root node, then perform
preorder traversal on the left subtree and perform inorder traversal on the
right subtree.

6

It is clear from the description that the definition of these three traversals are
inductive (recursive) in nature. So they directly or indirectly use a stack.

A binary tree can also be traversed level-by-level from left to right. This is
known as level-order traversal.

7

5

10

31

11 15

23

root

Following are outcome of different traversals on the above tree.

• Pre-order traversal: 7 5 10 31 11 23 15

• In-order traversal: 10 5 7 11 23 31 15

• Post-order traversal: 10 5 23 11 15 31 7

• Level-order traversal: 7 5 31 10 11 15 23

Following is a C language code for binary tree and traversals.

// binTree.h: Binary tree header file.

#ifndef _BINTREE_H

#define _BINTREE_H

#define ERROR 1

#define OK 0

#define TRUE 1

struct binaryTreeNode {

int data;

struct binaryTreeNode *leftChild, *rightChild, *parent;

};

typedef struct binaryTreeNode *binaryTree;

binaryTree createNullTree();

int isEmptyBinTree(binaryTree);

int isRoot(binaryTree) ;

binaryTree makeBinTree(

binaryTree ,

int,

binaryTree

);

7

binaryTree leftSubTree(binaryTree, int *);

binaryTree rightSubTree(binaryTree, int *);

binaryTree parent(binaryTree, int *);

void inorderTravel(binaryTree);

void preorderTravel(binaryTree);

void postorderTravel(binaryTree);

void levelOrderTravel(binaryTree);

int leafCount(binaryTree) ;

binaryTree copyTree(binaryTree);

#endif

// binTree.c: binary tree implementation file

#include "binTree.h"

#include "queue.h"

#include <stdio.h>

#include <stdlib.h>

binaryTree createNullTree() {

return NULL;

}

int isEmptyBinTree(binaryTree bp) {

return bp == NULL;

}

int isRoot(binaryTree bp) {

if(isEmptyBinTree(bp)) return TRUE ;

return bp == bp -> parent ;

}

binaryTree makeBinTree(binaryTree lp,

int n,

binaryTree rp

) {

binaryTree temp ;

temp = (binaryTree)malloc(sizeof(*temp)) ;

temp -> data = n ; temp -> parent = temp ;

temp -> leftChild = lp ; temp -> rightChild = rp ;

if(!isEmptyBinTree(lp)) lp -> parent = temp ;

if(!isEmptyBinTree(rp)) rp -> parent = temp ;

return temp ;

}

binaryTree leftSubTree(binaryTree bp, int *err) {

if(!isEmptyBinTree(bp)) {

*err = OK ;

return bp -> leftChild ;

8

}

*err = ERROR ;

return NULL ;

}

binaryTree rightSubTree(binaryTree bp, int *err) {

if(!isEmptyBinTree(bp)) {

*err = OK ;

return bp -> rightChild ;

}

*err = ERROR ;

return NULL ;

}

binaryTree parent(binaryTree bp, int *err) {

if(!isEmptyBinTree(bp)) {

*err = OK ;

return bp -> parent ;

}

*err = ERROR;

return NULL ;

}

void inorderTravel(binaryTree bp) {

if(!isEmptyBinTree(bp)) {

inorderTravel(bp -> leftChild) ;

printf("*%d*", bp -> data) ;

inorderTravel(bp -> rightChild) ;

}

}

void preorderTravel(binaryTree bp) {

if(!isEmptyBinTree(bp)) {

printf("*%d*", bp -> data) ;

preorderTravel(bp -> leftChild) ;

preorderTravel(bp -> rightChild) ;

}

}

void postorderTravel(binaryTree bp) {

if(!isEmptyBinTree(bp)) {

postorderTravel(bp -> leftChild) ;

postorderTravel(bp -> rightChild) ;

printf("*%d*", bp -> data) ;

}

}

int leafCount(binaryTree bp) {

int err ;

9

if(isEmptyBinTree(bp)) return 0 ;

if(isEmptyBinTree(rightSubTree(bp, &err)) &&

isEmptyBinTree(leftSubTree(bp, &err))) return 1 ;

return leafCount(rightSubTree(bp, &err)) +

leafCount(leftSubTree(bp, &err)) ;

}

binaryTree copyTree(binaryTree bp){

if(isEmptyBinTree(bp)) return createNullTree();

return makeBinTree(copyTree(bp->leftChild),

bp->data,

copyTree(bp->rightChild));

}

void levelOrderTravel(binaryTree bp){

queue q;

binaryTree bt;

if(isEmptyBinTree(bp)) return ;

init(&q);

add(&q, bp);

while(!isEmptyQ(q)){

front(q, &bt);

if(!isEmptyBinTree(bt -> leftChild))

add(&q, bt->leftChild);

if(!isEmptyBinTree(bt -> rightChild))

add(&q, bt->rightChild);

printf("*%d*", bt->data);

delete(&q);

}

}

// queue.h : queue on self-referencing structure with a

// dummy node

#ifndef _QUEUE_H

#define _QUEUE_H

#include <stdio.h>

#include <stdlib.h>

#include "binTree.h"

#define ERROR 1

#define OK 0

struct queue {

binaryTree data ;

struct queue *next ;

};

typedef struct queue node;

typedef struct {

10

struct queue *front, *rear ;

} queue ;

#define isEmptyQ(q) ((q).front == (q).rear)

void init(queue *) ;

int add(queue *, binaryTree) ;

int delete(queue *);

int front(queue, binaryTree *) ;

void printQ(queue);

#endif

// queue.c : queue on self referencing structure with a dummy node

#include "queue.h"

void init(queue *qP) {

node *temp ;

temp = (node *)malloc(sizeof(node)) ;

qP->front=qP->rear=temp ;

}

int add(queue *qP, binaryTree n) {

node *temp ;

temp=(node *)malloc(sizeof(node)) ;

temp->data=n; qP->rear->next=temp ;

qP->rear = temp ;

return OK ;

}

int front(queue q, binaryTree *v) {

if(isEmptyQ(q)) return ERROR ;

*v= q.front->next->data ;

return OK ;

}

int delete(queue *qP) {

node *temp ;

if(isEmptyQ(*qP)) return ERROR ;

temp = qP->front ;

qP->front=qP->front->next ;

free(temp) ;

return OK ;

}

// testBinTree.c : testing binary tree functions

#include <stdio.h>

#include "binTree.h"

11

int main()

{

binaryTree t, t1 ;

t = makeBinTree(

makeBinTree(

makeBinTree(

createNullTree(),

10,

createNullTree()

),

5,

createNullTree()

),

7,

makeBinTree(

makeBinTree(

createNullTree(),

11,

makeBinTree(

createNullTree(),

23,

createNullTree()

)

),

31,

makeBinTree(

createNullTree(),

15,

createNullTree()

)

)

);

printf("preOrder traversal: ");

preorderTravel(t) ;

printf("\n") ;

printf("inOrder traversal: ");

inorderTravel(t) ;

printf("\n") ;

printf("postOrder traversal: ");

postorderTravel(t) ;

printf("\n") ;

printf("levelOrder traversal: ");

levelOrderTravel(t) ;

printf("\n") ;

12

printf("Leaf Nodes count: %d\n", leafCount(t));

printf("tree copied: inOrder: ");

t1 = copyTree(t);

inorderTravel(t1) ;

printf("\n") ;

return 0 ;

}

A make file -

a.out: testBinTree.o binTree.o queue.o

cc testBinTree.o binTree.o queue.o

testBinTree.o: testBinTree.c binTree.h

cc -Wall -c testBinTree.c

binTree.o: binTree.c binTree.h queue.h

cc -Wall -c binTree.c

queue.o: queue.c binTree.h

cc -Wall -c queue.c

clean:

rm a.out testBinTree.o binTree.o queue.o

2 Binary Search Tree

A dynamic set is a collection of data where new data can be inserted and existing
data can be deleted. Each data has a key and a data is uniquely identified by
the key. It may be necessary to search data corresponding to a key. If the
set of keys are totally ordered, it may be necessary to find data corresponding
to the smallest and the largest key values. It may also necessary to find the
successor or the predecessor of a key. Printing all elements of the set following
the sequence of keys may also be required.

A binary search tree (bst) is a binary tree where data (key) is present in
every node. The set of keys is totally ordered. For every node x in a binary
search tree, the key values present in the left subtree are less than (<) the key
present at x. Similarly, the key values present in the right subtree are greater
than (>) the key present in x.

A binary search tree is called height-balanced if for each node x, the difference
of heights between the left subtree and the right subtree is at most one (1). But in
general a binary search tree may not be height-balanced. It may even degenerate
to a linear chain depending on data (the arrival order). The best and average
heights h of an n node binary search tree is O(logn). The worst case height of
a binary search tree is O(n). A dynamic set can be stored in a binary search
tree.

Type deceleration of a binary search tree node in C language is

13

typedef struct binaryTreeNode {

int data ;

struct binaryTreeNode

*leftChild, *rightChild, *parent ;

} *binStree;

1. Search in a binary search tree.

binStree searchbSt(binStree t, int key) {

if(isNullbSt(t)) return t ;

if(t->data == key) return t ;

if(key < t->data) return searchbSt(t->leftChild, key) ;

return searchbSt(t->rightChild, key) ;

}

The time complexity for search is O(h), where h is the height of the tree.
As the worst case height is of O(n), the search may take O(n) steps in a
skewed bst.

2. Insertion in a binary search tree.

Null Tree

Insert 50 :
root

50

root
50Insert 80 :

80

root
50

80

Insert 90 :

90

root
50

80

90

Insert 70 :

70

14

root
50

80

9070

Insert 27 :

27

root
50

80

9070

27

72

Insert 72 :

root
50

80

9070

27

72

Insert 12 :

12

root
50

80

9070

27

12

Insert 21 :
Insert 85 :

21 72 85

15

root
50

80

9070

27

12

21 72 85

Insert 65 : prev

curr65

65 > 50

root
50

80

9070

27

12

21 72 85

Insert 65 : prev

curr65

65 < 80

root
50

80

9070

27

12

21 72 85

Insert 65 : prev

curr65

65 < 70

root
50

80

9070

27

12

21 72 85

Insert 65 : prev

curr

Left Child is Null

65

The time complexity of insert is O(h), where h is the height of the tree. In
worst case this can be O(n), where n is the number of nodes in the tree.

3. The minimum key in the binary search tree

16

root
50

80

9070

27

12

21 72 8565

Min Node

The time complexity is O(h), where h is the height of the tree.

4. The successor of a node ‘x’ is the node ‘y’, if the key of the node ‘y’
follows immediately the key of the node ‘x’ in order. The successor is not
present in the tree for the largest key. The predecessor of a node is defined
similarly.

root
50

80

9070

27

12

21 72 8565

No successor of 90
Successor(21) => 27,Successor(50) => 65,
Successor(72) => 80,

root
50

80

9070

27

12

21 72 8565

Minimum of Left Subtree

Successor of 50:

17

root
50

80

9070

27

12

21 72 8565

nodeP

parentP

Node of 21 has no rightsubtree

Successor of 21

root
50

80

9070

27

12

21 72 8565

nodeP

parentP

Successor of 21

5. Delete a node

root
50

80

9070

27

12

21 72 8565

Both Subtrees are NULL

Delete 65:

18

root
50

80

9070

27

12

21 72 8565

One Subtree is NULL

Delete 90:

root
50

80

9070

27

12

21 72 8565

Delete 50:

Both subtrees are present

copy and delete the successor

Copy

root
50

80

9070

72 8565

New Root

Delete 50:

The worst case time complexity of delete is O(h), where h is the height
of the tree, as it may be necessary to find the successor of the node to be
deleted.

6. A binary search tree can be rotated. If the left subtree is non-null, the
tree can be rotated right (counter clockwise) i.e.

(a) The root of the left subtree will be the new root of the tree.

(b) The right subtree of the left subtree will be the left subtree of the
old root.

(c) The old root will be the root of the right subtree of the new root.

An example of a binary search tree after rotation.

19

root
50

80

9070

27

12

21 72 8565

50

80

9070

72 8565

27

12

21

new root

Right Rotate

7. Construct binary search tree of height 3, 4, 5, 6, and 7 with the following
data: {1, 2, 3, 4, 5, 6, 7}.

8. A sorted sequence of the key values can be obtained from a binary-search
tree by

(a) inorder traversal, (b) preorder traversal, (c) postorder traversal, (d)
label order traversal, (e) none

Ans. (a)

9. The worst case time complexity to find the largest element from a binary
search tree of n nodes is

(a) Θ(n logn), (b) Θ(n), (c) Θ(logn), (d) Θ(1), (e) none

Ans. (b)

10. The worst case time complexity to find the smallest element from a binary
search tree of n nodes is

(a) Θ(n logn), (b) Θ(n), (c) Θ(logn), (d) Θ(1), (e) none

Ans. (b)

11. Given a set of 4 distinct integers, the number of possible binary search
trees are

(a) one (1), (b) four (4), (c) twelve (12), (d) fourteen (14), (e) none

Ans. (d)

12. The data present in a binary search tree can be printed in the sorted order
in time

(a) Θ(n), (b) O(n), (c) Θ(n logn), (d) O(log n), (e) none

Ans. (a) and (b)

20

/*

* binStree.h is a header file of an implementation of

* binary search tree of int data. The implementation file

* is binStree.c.

*/

#ifndef _BINSTREE_H

#define _BINSTREE_H

#include <stdio.h>

#define ERROR 1

#define OK 0

typedef struct binaryTreeNode {

int data ;

struct binaryTreeNode

*leftChild, *rightChild, *parent ;

} *binStree;

static inline void initbSt(binStree *tP) { *tP = NULL ;}

static inline int isNullbSt(binStree t) { return t == NULL ;}

static inline void printNode(binStree t) {

if(isNullbSt(t)) return ;

printf("%d ", t->data) ;

}

int insertbSt(binStree *, int) ;

int insertbSt1(binStree *, int) ;

int inorderbStTravel(binStree t) ;

binStree searchbSt(binStree, int) ;

binStree minimumbSt(binStree) ;

binStree successorbSt(binStree, int) ;

int deletebSt(binStree *, int) ;

binStree rotateRight(binStree bp);

#endif

21

/*

* binStree.c is the implementation file for the

* binary search tree. The header file is

* binStree.h

* Compile as $ cc -Wall -O1 -c binStree.c

* The optimization is to be set on for inline functions

* to expand.

*/

#include "binStree.h"

#include <stdlib.h>

int inorderbStTravel(binStree t) {

int lcount, rcount ;

if(isNullbSt(t)) return 0 ;

lcount = inorderbStTravel(t->leftChild) ;

printNode(t) ;

rcount = inorderbStTravel(t->rightChild) ;

return lcount + rcount + 1 ;

}

static int insertbStRec(binStree *tP, struct binaryTreeNode *nP) {

binStree t ;

if(isNullbSt(*tP)) { // Null tree

*tP = nP ;

nP->parent = NULL ;

return OK ;

}

t = *tP ;

if(t->data > nP->data){ // Insert in left subtree

if(t->leftChild == NULL) { // Left subtree null

t->leftChild = nP ;

nP->parent = t;

return OK ;

}

else return insertbStRec(&t->leftChild, nP) ;

}

else { // Insert in rightsubtree

if(t->rightChild == NULL) { // Right subtree null

t->rightChild = nP ;

nP->parent = t;

return OK ;

}

else return insertbStRec(&t->rightChild, nP) ;

}

22

}

int insertbSt(binStree *tP, int key) {

struct binaryTreeNode *nP ;

nP = (struct binaryTreeNode *)malloc(sizeof(struct binaryTreeNode));

if(nP == NULL) {

perror("malloc error") ;

exit(0) ;

}

nP->leftChild = nP->rightChild = NULL ;

nP->data = key ;

return insertbStRec(tP, nP) ;

}

int insertbSt1(binStree *tP, int key) {

struct binaryTreeNode *nP, *prev, *curr ;

nP = (struct binaryTreeNode *)malloc(sizeof(struct binaryTreeNode));

if(nP == NULL) {

perror("malloc error") ;

exit(0) ;

}

nP->leftChild = nP->rightChild = NULL ;

nP->data = key ;

prev = NULL ;

curr = *tP ;

while(curr) {

prev = curr ;

if(key <= curr->data) curr = curr->leftChild ;

else curr = curr -> rightChild ;

}

nP->parent = prev ;

if(prev == NULL) *tP = nP ;

else

if(key <= prev->data) prev->leftChild = nP ;

else prev->rightChild = nP ;

return OK ;

}

binStree searchbSt(binStree t, int key) {

if(isNullbSt(t)) return t ;

if(t->data == key) return t ;

if(key < t->data) return searchbSt(t->leftChild, key) ;

return searchbSt(t->rightChild, key) ;

}

23

binStree minimumbSt(binStree t) {

if(isNullbSt(t)) return t ;

while(t->leftChild) t = t->leftChild ;

return t ;

}

binStree successorbSt(binStree t, int key) {

binStree parentP, nodeP = searchbSt(t, key) ;

if(nodeP == NULL) return NULL ;

if(nodeP->rightChild != NULL)

return minimumbSt(nodeP->rightChild) ;

parentP = nodeP->parent ;

while(parentP != NULL && nodeP == parentP->rightChild) {

nodeP = parentP ;

parentP = nodeP -> parent ;

}

return parentP ;

}

int deletebSt(binStree *tP, int key) {

binStree t = *tP, delP, nodeP, lrP ;

delP = searchbSt(t, key) ; // Find the node

nodeP = delP ;

if(nodeP == NULL) return ERROR ;

/* If both left and right children are present, the successor of the

* node is physically deleted. The key of the successor node is

* copied to the node pointed by ‘delP’.

*/

if(nodeP->leftChild != NULL && nodeP->rightChild != NULL)

nodeP = successorbSt(t, key) ;

/* ‘nodeP’ points to a node whose at least one children is NULL.

* The other child (it may also be NULL) is pointed by ‘lrP’.

*/

if(nodeP->leftChild != NULL) lrP = nodeP->leftChild ;

else lrP = nodeP -> rightChild ;

if(lrP != NULL) lrP->parent = nodeP->parent ;

if(nodeP->parent == NULL) *tP = lrP ; // Root is deleted

else

if(nodeP == nodeP->parent->leftChild) // Left child deleted

24

nodeP->parent->leftChild = lrP ;

else nodeP->parent->rightChild = lrP ; // Right child deleted

delP->data = nodeP->data ; // Data copy from deleted node

free(nodeP) ;

return OK ;

}

binStree rotateRight(binStree bp){

binStree tp;

if(isNullbSt(bp) ||

isNullbSt(bp->leftChild)) return bp;

tp = bp->leftChild;

bp->leftChild = tp->rightChild;

tp->rightChild = bp;

return tp;

}

25

/*

* testBinStree.c is the main program to test the

* binary search tree. The header file is binStree.h

* The object module is binStree.o

* Compile the executable module as

* $ cc -Wall -O1 testBinStree.c binStree.o

*/

#include "binStree.h"

int main() {

binStree t ;

initbSt(&t) ;

inorderbStTravel(t) ;

printf("\n") ;

insertbSt1(&t, 50) ;

insertbSt1(&t, 15) ;

insertbSt1(&t, 60) ;

insertbSt1(&t, 90) ;

insertbSt1(&t, 25) ;

insertbSt1(&t, 35) ;

insertbSt1(&t, 45) ;

insertbSt1(&t, 75) ;

insertbSt1(&t, 10) ;

insertbSt1(&t, 80) ;

insertbSt1(&t, 100) ;

insertbSt1(&t, 5) ;

inorderbStTravel(t) ;

printf("\n") ;

// t = rotateRight(t);

// printf("After right rotation:\n");

// inorderbStTravel(t) ;

// printf("\n") ;

printf("Successor of %d is ", 60) ;

printNode(successorbSt(t,60)) ;

printf("\n") ;

deletebSt(&t, 50) ;

inorderbStTravel(t) ;

printf("\n") ;

return 0;

}

26

References

[EHSSDM] Fundamentals of Data Structures in C++, by Ellis Horowitz, Sartaj

Sahni and Dinesh Mehta, Galgotia Pub. Pvt. Ltd., 2009, ISBN 81-751-278-8.

27

