
C Programming 1✬

✫

✩

✪

Pointer Variable, Memory Location & Content

Lect 5 Goutam Biswas

C Programming 2✬

✫

✩

✪

✞

✝

☎

✆int *intPointer

• Address of a variable can be extracted by

the unary operator ‘&’.

• Address of a loaction is a storable value.

• A variable of type int ∗ can store the

address of a location of type int.

Lect 5 Goutam Biswas

C Programming 3✬

✫

✩

✪

 r−value
Content or

Address or
 l−value

int *intPointer

intPointerMemory Location for

type: address of
 an int locationgarbage

Lect 5 Goutam Biswas

C Programming 4✬

✫

✩

✪

• Memory is allocated to a variable of type

‘int ∗’ (pointer to an int) like any other

variable. Its size depends on the machine

architecturea.

• Pointer location does not contain any valid

address unless it is initialized.
aThe size is 8-bytes on a x86 64 machine.

Lect 5 Goutam Biswas

C Programming 5✬

✫

✩

✪

sizeof

• The unary operator sizeof can be used to

find the size of a type or of a variable.

• The size of pointer variable of all types are

identical. Then, a natural question is, why

does C language uses different type names

for them.

Lect 5 Goutam Biswas

C Programming 6✬

✫

✩

✪

#include <stdio.h>

int main() // temp11.c

{

char n, *p ;

printf("sizeof n: %ld\n", sizeof n) ;

printf("sizeof p: %ld\n", sizeof p) ;

printf("sizeof(char): %ld\n",sizeof(char))

printf("sizeof(char *): %ld\n",

sizeof(char *)) ;

return 0 ;

}

Lect 5 Goutam Biswas

C Programming 7✬

✫

✩

✪

Output

$ cc -Wall temp11.c
$./a.out
sizeof n: 1
sizeof p: 8
sizeof(char): 1
sizeof(char *): 8

Lect 5 Goutam Biswas

C Programming 8✬

✫

✩

✪

#include <stdio.h>

int main() // temp12.c

{

printf("sizeof(char *): %ld\n",

sizeof(char *)) ;

printf("sizeof(int *): %ld\n",

sizeof(int *)) ;

printf("sizeof(float *): %ld\n",

sizeof(float *)) ;

return 0 ;

}

Lect 5 Goutam Biswas

C Programming 9✬

✫

✩

✪

Output

$ cc -Wall temp12.c
$./a.out
sizeof(char *): 8
sizeof(int *): 8
sizeof(float *): 8

Lect 5 Goutam Biswas

C Programming 10✬

✫

✩

✪

(mis)Use of a Pointer

The unary operator ‘∗’ (not to be confused with
the binary multiplication operator) applied to
an address or pointer to any location of any
typea gives the object bound to that location.

aIt is polymorphic.

Lect 5 Goutam Biswas

C Programming 11✬

✫

✩

✪

#include <stdio.h>

int main() // temp7.c

{

int count = 10, *intPointer = &count;

printf("count: %d, *intPointer: %d\n",

count, *intPointer);

count = count + 5 ;

*intPointer = *intPointer*10 ;

printf("count: %d\n", *intPointer);

return 0 ;

}

Lect 5 Goutam Biswas

C Programming 12✬

✫

✩

✪

Output

$ cc -Wall temp7.c
$./a.out
count: 10, *intPointer: 10
count: 150

Lect 5 Goutam Biswas

C Programming 13✬

✫

✩

✪

A
intPointer

A
count

int

A
intPointer

A
count

A
intPointer

A
count

count
A

int *intPointer, count ;

int *

count

count

count

count = 10 ;

intPointer = & count ;

10

10

intPointer

intPointer

intPointer

Lect 5 Goutam Biswas

C Programming 14✬

✫

✩

✪

• The int variable count is initialized to 10.

• The int * variable intPointer is initialized

with the address of the location of count.

Lect 5 Goutam Biswas

C Programming 15✬

✫

✩

✪

A
intPointer

A
count

A
intPointer

A
count

A
count

A
count

count = count + 5 ;

*intPointer = *intPointer*10 ;

intPointer

intPointer

count

count

15

150

Lect 5 Goutam Biswas

C Programming 16✬

✫

✩

✪

• The variable intPointer stores the address

of the object count.

• The expression *intPointer is equivalent to

the object count.

• If the ‘*’ operator is applied to an illegal

address (pointer), there will be an error (a

segmentation fault).

Lect 5 Goutam Biswas

C Programming 17✬

✫

✩

✪

#include <stdio.h>

int main() // temp13.c

{

int *p = (int *)100 ; // illegal

printf("*p: %d\n", *p) ;

return 0 ;

}

Lect 5 Goutam Biswas

C Programming 18✬

✫

✩

✪

Output

$ cc -Wall temp13.c
$./a.out
Segmentation fault

Lect 5 Goutam Biswas

