
C Programming 1✬

✫

✩

✪

Basic Assignment and Arithmetic Operators

Lect 4 Goutam Biswas

C Programming 2✬

✫

✩

✪

Assignment Operator ‘=’

✛

✚

✘

✙
int count ;

count = 10 ;

• The first line declares the variable count.

• In the second line an assignment operator

(=) is used to store 10 in the location of

count.

Lect 4 Goutam Biswas

C Programming 3✬

✫

✩

✪

• In C language ‘count = 10’ is called an

expression (with side effect) where ‘=’ is

called the assignment operator (not

equality).

• Value of the expression is 10.

• The semicolon ‘;’ converts the expression to

a statement.

Lect 4 Goutam Biswas

C Programming 4✬

✫

✩

✪

Next statement -✞✝ ☎✆count = 2*count + 5;

• In this statement the variable count is used

on two sides of the assignment operator.

There are two constants 2 and 5, and three

operators ‘=’ (assignment), ‘∗’

(multiplication) and ‘+’ (addition).

• count = 2*count + 5 is an expression

(excluding the semicolon).

Lect 4 Goutam Biswas

C Programming 5✬

✫

✩

✪

The informal semantics (action, meaning) of

the previous expression is the following:

• The content (r-value) of count is multiplied

by 2, then 5 is added to the result

(10× 2 + 5 is 25).

• The final value 25 is stored in the location

(l-value) of count.

• The value of the expression is 25.

Lect 4 Goutam Biswas

C Programming 6✬

✫

✩

✪

count int

int count;

count = 10 ;

count

count = 2*count + 5;

count

10

25

garbage

Lect 4 Goutam Biswas

C Programming 7✬

✫

✩

✪

Assignment from One Type to Another

• A float data can be assigned to an int

variable, but there may be loss of precession.

• Similarly an int data can also be assigned to

a variable of type float; but again there

may be loss information.

• These processes are called type casting.

Lect 4 Goutam Biswas

C Programming 8✬

✫

✩

✪

float cgpa

int count

7.57

21474836472.147484e+09

Lect 4 Goutam Biswas

C Programming 9✬

✫

✩

✪

#include <stdio.h>

int main() // temp1.c

{

int count = (int) 7.5 ;

float cgpa = (float) 2147483647;

printf("count: %d\n", count);

printf("cgpa: %e\n", cgpa);

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 10✬

✫

✩

✪

Output

$ cc -Wall temp.c
$./a.out
count: 7
cgpa: 2.147484e+09

Lect 4 Goutam Biswas

C Programming 11✬

✫

✩

✪

Note

• Type casting is not a simple operation due

to the difference in internal representations

of int and float.

• In case of (int)7.5, the fractional part is

removed and the value is 7 in 32-bit integer

representation (2’s complement form).

• The value of (int)0.75 is zero (0).

Lect 4 Goutam Biswas

C Programming 12✬

✫

✩

✪

Note

• In the second case (float) 2147483647

converts the integer to IEEE 754

floating-point representation. In this format

the number of bits available for storing the

significant digits is 23, and all the digits of

2147483647 cannot be stored

(223 = 8388608). So there will be a loss of

precision.

Lect 4 Goutam Biswas

C Programming 13✬

✫

✩

✪

Five Basic Arithmetic Operators

✞
✝

☎
✆+, −, ∗, /, %

• The first four operators have their usual

meaning - addition, subtraction,

multiplication and division.

• The last operator ‘%’ extracts the

remaindera. It may be called the mod

operator.
aa%b - the first operand a should be non-negative integer and the second

operand b should be a positive integer.

Lect 4 Goutam Biswas

C Programming 14✬

✫

✩

✪

#include <stdio.h>

int main() // temp2.c

{

printf("0%%10 = %d\n", 0%10);

printf("4%%10 = %d\n", 4%10);

printf("10%%4 = %d\n", 10%4);

printf("-10%%4 = %d\n", -10%4);

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 15✬

✫

✩

✪

Output

$ cc -Wall temp2.c
$./a.out
0%10 = 0
4%10 = 4
10%4 = 2
-10%4 = -2

Lect 4 Goutam Biswas

C Programming 16✬

✫

✩

✪

Operator Overloading

The first four operators +,−, ∗, / can be used
for int, float and char dataa. But the fifth
operator cannot be used on float data.

aThe actual operations of addition, subtraction etc. on int and float data are

very different due to the difference in their representations.

Lect 4 Goutam Biswas

C Programming 17✬

✫

✩

✪

Mixed Mode Operations

• Mixed mode operations among int, float

and char data are permitted.

• If one operand is of type float and the

other one is of type int, the int data will be

converted to the closest float representation

before performing the operation.

Lect 4 Goutam Biswas

C Programming 18✬

✫

✩

✪

#include <stdio.h>

int main() // temp3.c

{

int n = 4 ;

float a = 2.5 ;

char c = ’a’ ; // ASCII value 97

printf("%d*%f = %f\n", n, a, n*a);

printf("%d*%f+%c = %f\n",n,a,c,n*a+c);

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 19✬

✫

✩

✪

Output

$ cc -Wall temp3.c
$./a.out
4*2.500000 = 10.000000
4*2.500000+a = 107.000000

Lect 4 Goutam Biswas

C Programming 20✬

✫

✩

✪

Computer Arithmetic!

☛
✡

✟
✠1

3
× 30.0 = 0.0

One should be careful about the division
operation on int data.

Lect 4 Goutam Biswas

C Programming 21✬

✫

✩

✪

#include <stdio.h>

int main() // temp4.c

{

printf("1/3*30.0=%f\n", 1/3*30.0);

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 22✬

✫

✩

✪

Output

$ cc -Wall temp4.c
$./a.out
1/3*10.0=0.000000

Lect 4 Goutam Biswas

C Programming 23✬

✫

✩

✪

#include <stdio.h>

int main() // temp4a.c

{

printf("10.0*1/3=%f\n", 10.0*1/3);

printf("10.0*(1/3)=%f\n", 10.0*(1/3));

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 24✬

✫

✩

✪

Output

$ cc -Wall temp4a.c
$ a.out
10.0*1/3=3.333333
10.0*(1/3)=0.000000

Lect 4 Goutam Biswas

C Programming 25✬

✫

✩

✪

Computer Arithmetic!

✞✝ ☎✆2147483647 + 1 = −2147483648

Addition may give wrong result due to range
overflow.

Lect 4 Goutam Biswas

C Programming 26✬

✫

✩

✪

#include <stdio.h>

int main() // temp14.c

{

int n = 2147483647;

printf("n+1: %d\n", n+1) ;

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 27✬

✫

✩

✪

Output

$ cc -Wall temp14.c
$./a.out
n+1: -2147483648

Lect 4 Goutam Biswas

C Programming 28✬

✫

✩

✪

Computer Arithmetic!

✞✝ ☎✆105 + 10−41 = 105

There will be loss of precession in floating point
arithmetic.

Lect 4 Goutam Biswas

C Programming 29✬

✫

✩

✪

#include <stdio.h>

int main() // temp8.c

{

float a = 1.0e-40, b = 1.0e+5, c;

c = a+b ;

printf("%e + %e = %e\n", a, b, c);

if(b == a+b) printf("Equal\n");

else printf("not Equal\n");

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 30✬

✫

✩

✪

Output

$ cc -Wall temp8.c
$ a.out
9.999946e-41 + 1.000000e+05 = 1.000000e+05
Equal
$

Lect 4 Goutam Biswas

C Programming 31✬

✫

✩

✪

Precedence and Associativity

• All these five operators +,−, ∗, /,% are

left-to-right associative.

• ∗, /,% have same precedence and it is higher

than +,− which also have the same

precedence.

Lect 4 Goutam Biswas

C Programming 32✬

✫

✩

✪

‘=’ is Right Associative

✛

✚

✘

✙
int count = 10, n ;

n = count = 2*count + 5 ;

The variable n gets the updated value of count
i.e. 25.

Lect 4 Goutam Biswas

C Programming 33✬

✫

✩

✪

Precedence of =

The precedence of assignment operator(s) is
lower than every other operator except the
comma ‘,’ operator.

Lect 4 Goutam Biswas

C Programming 34✬

✫

✩

✪

Computer Arithmetic!

✞✝ ☎✆1.3 6= float a = 1.3;

Lect 4 Goutam Biswas

C Programming 35✬

✫

✩

✪

#include <stdio.h>

int main() // temp5.c

{

float a = 1.3 ;

if(a == 1.3) printf("Equal\n") ;

else printf("Not equal\n") ;

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 36✬

✫

✩

✪

Output

$ cc -Wall temp5.c
$./a.out
Not equal

Lect 4 Goutam Biswas

C Programming 37✬

✫

✩

✪

Error

• Division of int data by zero gives error at

run timea.

• But the division of float or double data by

zero does not generate any run time error.

The result is infb.
aGCC error message is funny.
bThis value can be used.

Lect 4 Goutam Biswas

C Programming 38✬

✫

✩

✪

#include <stdio.h>

int main() // temp9.c

{

int n = 10, m ;

printf("Enter an integer: ");

scanf("%d", &m);

printf("n/m: %d\n", n/m);

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 39✬

✫

✩

✪

Output

$ cc -Wall temp9.c
$./a.out
Enter an integer: 0
Floating point exception

Lect 4 Goutam Biswas

C Programming 40✬

✫

✩

✪

#include <stdio.h>

#include <math.h>

int main() // temp10.c

{

float n = 10.0, m, r ;

printf("Enter a number: ");

scanf("%f", &m);

printf("n/m: %f\n", r = n/m);

printf("atan(%f) = %f\n", r, atan(r));

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 41✬

✫

✩

✪

Output

$ cc -Wall temp10.c -lm
$ a.out
Enter a number: 0
n/m: inf
atan(inf) = 1.570796

Lect 4 Goutam Biswas

C Programming 42✬

✫

✩

✪

Integer ↔ Character

• If a char data is assigned to an int type

variable, the ASCII value of the data is

stored in the location.

• But if an int data (32-bit size) is assigned to

a char type variable (8-bit size), the least

significant 8-bits of the data are stored in

the location.

Lect 4 Goutam Biswas

C Programming 43✬

✫

✩

✪

count

grade

’C’

1345’A’

67

int count ; char grade ;

Lect 4 Goutam Biswas

C Programming 44✬

✫

✩

✪

#include <stdio.h>

int main() // temp6.c

{

int count = ’C’ ;

char grade = 1345 ;

printf("count: %d, grade: %c\n",

count, grade) ;

return 0 ;

}

Lect 4 Goutam Biswas

C Programming 45✬

✫

✩

✪

Output

$ cc -Wall temp6.c
temp6.c: In function ‘main’:
temp6.c:5: warning: overflow in
implicit constant conversion
$./a.out
count: 67, grade: A

Lect 4 Goutam Biswas

C Programming 46✬

✫

✩

✪

Note

• The ASCII code for ‘C’ is 67 and that is

stored in the location for count.

• The internal representation of 1345 is

0000 0000 0000 0000 0000 0101 0100 0001.

The decimal value of the least significant

byte (8-bit) 0100 0001 is 65, the ASCII code

for ‘A’.

Lect 4 Goutam Biswas

C Programming 47✬

✫

✩

✪

Pre and Post Increments

✬

✫

✩

✪

int count = 10, total = 10 ;

++count ;

total++ ;

Lect 4 Goutam Biswas

C Programming 48✬

✫

✩

✪

• Both ++count and total++ are expressions

with increment operators. The first one is

pre-increment and the second one is

post-increment.

• At the end of execution of the corresponding

statements, the value of each location is 11.

• But the value of the expression ++count is

11 and that of the total++ is 10.

Lect 4 Goutam Biswas

C Programming 49✬

✫

✩

✪

Pre and Post Decrements

✬

✫

✩

✪

int count = 10, total = 10 ;

--count ;

total-- ;

Similarly we have pre and post decrement
operators.

Lect 4 Goutam Biswas

C Programming 50✬

✫

✩

✪

More Assignment Operators

✛

✚

✘

✙
int count = 10, total = 6 ;

count += 5*total ;

The new value of count is 10 + 5× 6 = 40.
count += 5*total; is equivalent to
count=count+5*total;.

Lect 4 Goutam Biswas

C Programming 51✬

✫

✩

✪

More Assignment Operators

But count *= 5+total; is not same as count
= count*5+total; In the first case the value is
10× (5 + 6) = 110. But in the second case it is
10× 5 + 6 = 56.

Lect 4 Goutam Biswas

C Programming 52✬

✫

✩

✪

#include <stdio.h>

int main(){ // temp7a.c

int count = 10, total = 6;

printf("First val: %d\n", count *= 5+total);

count = 10; total = 6;

printf("Sec. val: %d\n", count = count*5+total);

return 0;

}

Lect 4 Goutam Biswas

C Programming 53✬

✫

✩

✪

Unary ‘+’ and ‘−’

The unary ‘−’ and ‘+’ have their usual
meaning with higher precedence than ∗, /,%.

Lect 4 Goutam Biswas

