
C Programming 1✬

✫

✩

✪

User Defined Data: Product Constructor

Lect 24 Goutam Biswas

C Programming 2✬

✫

✩

✪

Built-in Data Types

Built-in data types of C language are int,
float, unsigned int, char, double etc.
The representations and operations
corresponding to these data types are decided
by the language or by the compiler.

Lect 24 Goutam Biswas

C Programming 3✬

✫

✩

✪

Defined Types

It is essential to define new types of data
(object) and perform operations on them for
programming related to different applications.
A programming language cannot have
everything as built-in, but it should provide
facility (constructor) to define a new data type,
declare instances of objects of the defined type,
and facilities to support operations on them.

Lect 24 Goutam Biswas

C Programming 4✬

✫

✩

✪

A complex Example

A complex number (or its approximation) is
not a built-in datatype of C languagea.

aNot really - C99 has a data type Complex, complex. See the man page of

complex.h.

Lect 24 Goutam Biswas

C Programming 5✬

✫

✩

✪

C99 complex in GCC

#include <stdio.h>

#include <complex.h>

int main() // gComplex1.c

{

complex double x, y ;

x = 1.0 + 2.0i; // real + imaginary part

// Operator overloading

y = ~x; // complex conjugate

printf("x: %lf+j%lf\n",creal(x),cimag(x));

printf("y: %lf - j%lf\n",creal(y),-cimag(y));

return 0;

}

Lect 24 Goutam Biswas

C Programming 6✬

✫

✩

✪

Note

But we shall assume that the data type
complex is not supported in C language and
will define and support it as a user defined
data.

Lect 24 Goutam Biswas

C Programming 7✬

✫

✩

✪

Data in a Complex Number

In school mathematics book a complex number
z is written as z = a+ jb, where a and b are
two real nubers (real part and imaginary part
respectively). The symbol j distinguishes them
and is known as

√
−1.

Lect 24 Goutam Biswas

C Programming 8✬

✫

✩

✪

Data in a Complex Number

The actual data in z is an ordered pair of real

numbers i.e. z = (a, b), with proper definitions

of addition, multiplication etc.

The collection of complex numbers is the
Cartesian Product of reals i.e. C

∼= R × R.

Lect 24 Goutam Biswas

C Programming 9✬

✫

✩

✪

Note

Viewing C as R × R is not enough. The data
type C is an algebraic structure equipped with a
set of operations and relation e.g. addition,
subtraction, equality etc. But right now we are
mainly interested about the representation.

Lect 24 Goutam Biswas

C Programming 10✬

✫

✩

✪

Approximation for Representations

The first question is how to represent a complex
number in a C program. We have already
identified a complex number with a pair of
reals. But a real number cannot have exact
representation in a computer. It is
approximated as a floating-point number
(float or double). So a complex number may
be approximated as an ordered pair of
floating-point numbers.

Lect 24 Goutam Biswas

C Programming 11✬

✫

✩

✪

Representation: Choice I

We may take two variables of type double (or
float), one holds the real part and the other
one holds the imaginary part. We can perform
operations on such pairs. But following are the
problems of such a representation.

Lect 24 Goutam Biswas

C Programming 12✬

✫

✩

✪

Problems of Choice I

• There is no structural glue between these

two variables to call them as a single object.

• It is not possible to pass them as a single

parameter, return them as a single value.

• Cannot be assigned by a single assignment

or compare them directly.

Lect 24 Goutam Biswas

C Programming 13✬

✫

✩

✪

Representation: Choice II

We may take a two element array of type
double (or float), where the 0th element holds
the real part and the 1st element holds the
imaginary part. Unfortunately in C a whole
array cannot be returned as a value or assigned.
But otherwise this is not a bad choice as long as
the components of the object are of same type.

Lect 24 Goutam Biswas

C Programming 14✬

✫

✩

✪

Product Constructor in C

C language provides a type constructor for

product called a structure. A structure may

have data of different types with a tag/name

for each component. A structure corresponding

to the type complex is

struct complexType {
double real, imag ;

};
✞

✝

☎

✆
struct complexType is a new data type

Lect 24 Goutam Biswas

C Programming 15✬

✫

✩

✪

Note

A data type is a plan for a data object. The
defined data type structa complexType has
two components or members, each of type
double.

a‘struct’ is a reserve word like if, while, int, return etc. They have

specific meaning in a language and cannot be used as name of an object.

Lect 24 Goutam Biswas

C Programming 16✬

✫

✩

✪

struct complexType {
 double real, imag ;
}

real imag
data type

Lect 24 Goutam Biswas

C Programming 17✬

✫

✩

✪

Note

We can declare a variable, an array, a pointer
variable of the defined type. A variable can be
initialized.
Assignment operator can be used for this type,
the address of a variable of this type can be
extracted using &. A pointer variable can be
dereferenced using *.
A function can take it as a parameter and also
return a value of this type.
sizeof() extracts the size of a defined type.

Lect 24 Goutam Biswas

C Programming 18✬

✫

✩

✪

A Good Name to Data Type

A new name can be given to a data type using
typedef e.g. typedef int integer creates the
new name integer to the data type int. We
use typedef to give a better and shorter name
to struct complexType.

Lect 24 Goutam Biswas

C Programming 19✬

✫

✩

✪

Type: complex

struct complexType {
double real, imag ;

};
typedef struct complexType complex;

or we may have
typedef struct {

double real, imag ;
} complex;

Lect 24 Goutam Biswas

C Programming 20✬

✫

✩

✪

Operations

complex a = {1.0,2.0}, b, c[5], *p ;

The variable a of type complex is initialized
with 1.0 as the value of the real component
and 2.0 as the value of the imag component.

Lect 24 Goutam Biswas

C Programming 21✬

✫

✩

✪

Operations

complex a = {1.0,2.0}, b, c[5], *p ;

The variable b of type complex is uninitialized.
c[] is an 1-D array of five element of type
complex. The variable p is of type complex *
(pointer), can hold an address and its pointer
arithmetic is determined by the
sizeof(complex).

Lect 24 Goutam Biswas

C Programming 22✬

✫

✩

✪

Operations

complex a = {1.0,2.0}, b, c[5], *p ;

A field of a structure can be accessed by the ‘.’

(projection) operator. We may write,

b.real = 3.0; b.imag = 4.0 ;

a.real = 2.0*b.real + 3.0/b.imag ;

etc.

Lect 24 Goutam Biswas

C Programming 23✬

✫

✩

✪

Operations

complex a = {1.0,2.0}, b, c[5], *p ;

We can write p = &b to make p point to the

object b.

We can also use malloc() to allocate space for
type complex.
p = (complex *)malloc(sizeof(complex));
The returned generic pointer can be casted to
complex * and assigned.

Lect 24 Goutam Biswas

C Programming 24✬

✫

✩

✪

Operations

complex a = {1.0,2.0}, b, c[5], *p ;

p = &b; (*p).real = 5.0 ;

The pointer variable p is pointing to a complex
object (b), so *p is the object (b) and we get its
real component (b.real) using the ‘.’
operator. But then ‘.’ has higher precedence
than ‘*’, so a parenthesis is essential. A
short-hand to access the component of a
structure through a pointer is the operator ‘->’.
p -> real = 5.0 ;

Lect 24 Goutam Biswas

C Programming 25✬

✫

✩

✪

Operations

complex a = {1.0,2.0}, b, c[5], *p ;

c[3].real = 7.0, c[0].imag = 8.0;

Each element of the array is of type complex

and a component corresponding to an array

element can be accessed using ‘[]’ and ‘.’

operators.

We can also make p = c+2;, so that p points to
the second element of the array.

Lect 24 Goutam Biswas

C Programming 26✬

✫

✩

✪

Operations

complex addComplex(complex x, complex y){

complex t ;

t.real = x.real + y.real ;

t.imag = x.imag + y.imag;

return t;

}

A structure can be passed as a parameter and
can be returned as a value.
c[1] = addComplex(a,b);

Lect 24 Goutam Biswas

C Programming 27✬

✫

✩

✪

C Program

#include <stdio.h>

#include <stdlib.h>

typedef struct {

double real, imag ;

} complex ;

complex addComplex(complex, complex);

void printComplex(complex);

int main() // dataComplex1.c

{

complex a = {1.0, 2.0}, b, c[5], *p ;

b.real = 3.0, b.imag = 4.0 ;

Lect 24 Goutam Biswas

C Programming 28✬

✫

✩

✪

p = (complex *)malloc(sizeof(complex));

(*p).real = 5.0 ;

p -> imag = 6.0 ;

c[0].real = 7.0, c[0].imag = 8.0;

c[1] = addComplex(a,b);

c[2] = addComplex(*p, *p);

printComplex(c[0]);

putchar(’ ’);

printComplex(c[1]);

putchar(’\n’);

p = &c[2] ;

printComplex(*p);

putchar(’\n’);

return 0;

Lect 24 Goutam Biswas

C Programming 29✬

✫

✩

✪

}

complex addComplex(complex x, complex y){

complex t ;

t.real = x.real + y.real ;

t.imag = x.imag + y.imag;

return t;

}

void printComplex(complex x){

printf("%f + j%f", x.real, x.imag);

} // dataComplex1.c

Lect 24 Goutam Biswas

C Programming 30✬

✫

✩

✪

Output

$ cc -Wall dataComplex1.c
$./a.out
7.000000 + j8.000000 4.000000 +
j6.000000
10.000000 + j12.000000

Lect 24 Goutam Biswas

C Programming 31✬

✫

✩

✪

Student’s Data

Often data types are not standard
mathematical entity. We consider data related
to every student of a college (say IIT). There
may be large number of data items, but for
simplicity we only consider the name, roll
number, sgpa and grade points in different
semesters and the cgpa upto the last semester.
The corresponding product data type or the
structure may look like the following:

Lect 24 Goutam Biswas

C Programming 32✬

✫

✩

✪

Structure student

#define NAME 50
#define ROLL 9
typedef struct {

char name[NAME], roll[ROLL] ;
int sem ;
struct {
float sgpa ;
int gp;

} sgpa[10];
float cgpa ;

} student ;

Lect 24 Goutam Biswas

C Programming 33✬

✫

✩

✪

Structure student

#include <stdio.h>

#include <stdlib.h>

#define NAME 50

#define ROLL 9

typedef struct {

char name[NAME], roll[ROLL] ;

int sem ;

struct {

float sgpa ;

int gp;

} sgpa[10];

float cgpa ;

Lect 24 Goutam Biswas

C Programming 34✬

✫

✩

✪

} student ;

student *readStudent(int *);

void calcCgpa(student *, int);

void insertionSort(student *, int);

void writeStudent(student *, int);

int main() // dataStudent.c

{

int n;

student *sP ;

sP = readStudent(&n);

// printf("Raw data:\n");

// writeStudent(sP, n);

calcCgpa(sP, n);

insertionSort(sP, n);

Lect 24 Goutam Biswas

C Programming 35✬

✫

✩

✪

printf("Merit List:\n");

writeStudent(sP, n);

return 0;

}

student *readStudent(int *nP){

int i ;

student *sP ;

scanf("%d", nP);

sP = (student *)malloc(*nP*sizeof(student));

for(i=0; i<*nP; ++i){

int m, j;

scanf("%s %[^0-9]%d",

sP[i].roll, sP[i].name, &sP[i].sem);

m = sP[i].sem - 1;

Lect 24 Goutam Biswas

C Programming 36✬

✫

✩

✪

for(j=0; j<m; ++j)

scanf("%d%f", &sP[i].sgpa[j].gp,

&sP[i].sgpa[j].sgpa);

}

return sP;

} // dataStudent.c

void calcCgpa(student *sP, int n){

int i, j, gpSum;

float sgpaSum;

for(i=0; i<n; ++i){

gpSum = 0, sgpaSum = 0.0;

for(j=1; j<sP[i].sem; ++j){

gpSum += sP[i].sgpa[j-1].gp;

Lect 24 Goutam Biswas

C Programming 37✬

✫

✩

✪

sgpaSum += sP[i].sgpa[j-1].gp*sP[i].sgpa[j-1].sg

}

sP[i].cgpa = sgpaSum/gpSum;

}

} // dataStudent.c

void insertionSort(student *sP, int n){

int i, j ;

student temp ;

for(i=0; i<n; ++i){

temp = sP[i] ;

for(j=i-1; j>=0; --j)

if(sP[j].cgpa < temp.cgpa) sP[j+1] = sP[j];

else break ;

Lect 24 Goutam Biswas

C Programming 38✬

✫

✩

✪

sP[j+1] = temp;

}

} // dataStudent.c

void writeStudent(student *sP, int n){

int i, j;

for(i=0; i<n; ++i){

printf("%s %s\n", sP[i].roll, sP[i].name);

for(j=1; j<sP[i].sem; ++j)

printf("\tSem %d sgpa: %4.2f\n", j, sP[i].sgpa[j-1].sgpa);

printf("\t\tcgpa: %4.2f\n", sP[i].cgpa);

}

} // dataStudent.c

Lect 24 Goutam Biswas

C Programming 39✬

✫

✩

✪

Input Data: stdData

7

08CE1012 Sukesh Jain 3 20 8.5 25 8.0

08CS1020 Ansuman Roy 3 22 8.0 23 7.5

08PH1010 Rusha Ahamed 3 25 9.0 20 8.5

08NA1002 Karan Rao 3 20 8.0 25 7.5

08EE1007 Simranjit S Mann 3 23 8.5 22 8.5

08EC1023 P V Verma 3 20 8.0 25 9.0

08CH1016 P V Verma 3 20 8.0 25 9.0

Lect 24 Goutam Biswas

C Programming 40✬

✫

✩

✪

Variation of Structure student

#define NAME 50
#define ROLL 9
struct sgpa {

float sgpa;
int gp;

};
typedef struct {

char name[NAME], roll[ROLL] ;
int sem ;
struct sgpa sgpa[10];
float cgpa ;

} student, Student ;

Lect 24 Goutam Biswas

C Programming 41✬

✫

✩

✪

Note

The type name struct sgpa does not clash

with the field name sgpa[10].

More than one type name can be given using

typedef.

If a variable is declared with a type name
defined by typedef, the defined type name will
be obscured in the scope of the variable.

Lect 24 Goutam Biswas

C Programming 42✬

✫

✩

✪

Name Clash

#include <stdio.h>

typedef struct complexType {

double real, imag;

} complex ;

int main() // typedef1.c

{

int complex; // Obscures type complex in main()

// complex a = {1.0, 2.0}, b = {2.0, 3.0};

return 0;

}

complex addComplex(complex x, complex y){ // complex is type

Lect 24 Goutam Biswas

C Programming 43✬

✫

✩

✪

complex t;

t.real = x.real + y.real ;

t.imag = x.imag + y.imag ;

return t;

}

Lect 24 Goutam Biswas

