
C Programming 1✬

✫

✩

✪

Internal Sorting by Comparison

Lect 19 Goutam Biswas

C Programming 2✬

✫

✩

✪

Problem Specification

Consider the collection of data related to the

students of a particular class. Each data

consists of

• Roll Number: char rollNo[9]

• Name: char name[50]

• cgpa: double cgpa

It is necessary to prepare the merit list of the
students.

Lect 19 Goutam Biswas

C Programming 3✬

✫

✩

✪

Roll No. Name CGPA

02ZO2001 V. Bansal 7.50

02ZO2002 P. K. Singh 8.00

02ZO2003 Imtiaz Ali 8.50

02ZO2004 S. P. Sengupta 8.25

02ZO2005 P. Baluchandran 9.25

02ZO2006 V. K. R. V. Rao 9.00

02ZO2007 L. P. Yadav 6.50

02ZO2008 A. Maria Watson 8.00

02ZO2009 S. V. Reddy 7.00

02ZO2010 D. K. Sarlekar 7.50

Lect 19 Goutam Biswas

C Programming 4✬

✫

✩

✪

Sorting

The merit list should be sorted on cgpa of
students in descending order.

Lect 19 Goutam Biswas

C Programming 5✬

✫

✩

✪

Roll No. Name CGPA

02ZO2005 P. Baluchandran 9.25

02ZO2006 V. K. R. V. Rao 9.00

02ZO2003 Imtiaz Ali 8.50

02ZO2004 S. P. Sengupta 8.25

02ZO2002 P. K. Singh 8.00

02ZO2008 A. Maria Watson 8.00

02ZO2001 V. Bansal 7.50

02ZO2010 D. K. Sarlekar 7.50

02ZO2009 S. V. Reddy 7.00

02ZO2007 L. P. Yadav 6.50

Lect 19 Goutam Biswas

C Programming 6✬

✫

✩

✪

Problem Abstraction

We only consider the cgpa field for discussion of
sorting algorithms.

Unsorted Data

7.5 8.0 8.5 8.25 9.25 9.0 6.5 8.0 7.0 7.5

Sorted Data

9.25 9.0 8.5 8.25 8.0 8.0 7.5 7.5 7.0 6.5

Lect 19 Goutam Biswas

C Programming 7✬

✫

✩

✪

Sorting by Comparison

We shall consider sorting of data by
comparison. There are other sorting techniques.
We also assume that the whole data set is
available in the main memory.

Lect 19 Goutam Biswas

C Programming 8✬

✫

✩

✪

Simple Sorting Algorithms

• Selection Sort

• Insertion Sort

• Bubble Sort

Lect 19 Goutam Biswas

C Programming 9✬

✫

✩

✪

Selection Sort

The data is stored in an 1-D array and we sort

them in non-ascending order. Let the number

of data be n

for i ← 0 to n− 2 do

maxIndex ← indexOfMax({a[i], · · · , a[n-1]})

a[i] ↔ a[maxIndex] #Exchange

endFor

Lect 19 Goutam Biswas

C Programming 10✬

✫

✩

✪

0 1 2 43 5 6 7

0 1 2 43 5 6 7

0 1 2 43 5 6 7

0 1 2 43 5 6 7

Unsorted Data

After i=0

After i=1

After i=2

Index of Max

Index of Max

Index of Max

Index of Max

7.5 8.0 6.5 9.25 7.5 8.5 9.0 7.0

9.25 8.0 6.5 7.5 7.5 8.5 9.0 7.0

7.08.08.57.57.56.59.09.25

9.25 9.0 8.5 7.5 7.5 6.5 8.0 7.0

Lect 19 Goutam Biswas

C Programming 11✬

✫

✩

✪

C Program

Lect 19 Goutam Biswas

C Programming 12✬

✫

✩

✪

int indexOfMax(double cgpa[],int low,int high) {

double max = cgpa[low];

int indMax = low, i;

for(i=low+1; i<=high; ++i)

if(cgpa[i] > max) {

max = cgpa[i];

indMax = i;

}

return indMax;

} // selSort.c

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void selectionSort(double cgpa[], int noOfStdnt) {

int i ;

Lect 19 Goutam Biswas

C Programming 13✬

✫

✩

✪

for(i = 0; i < noOfStdnt - 1; ++i) {

int max = indexOfMax(cgpa, i, noOfStdnt-1);

double temp ;

EXCH(cgpa[i], cgpa[max], temp);

}

} // selSort.c

Lect 19 Goutam Biswas

C Programming 14✬

✫

✩

✪

Measure of Goodness of an Algorithm

• Correctness of the algorithm.

• Increase of execution time with the increase

in the size of input.

• Increase of the requirement of extra space

(other than the space required by the input

data) with the increase in the size of input.

• Difficulty in coding the algorithm, · · ·

Lect 19 Goutam Biswas

C Programming 15✬

✫

✩

✪

Execution Time

The execution time of a program (algorithm)
depends on many factors e.g. the machine
parameters (clock speed, instruction set,
memory access time etc.), the code generated
by the compiler, other processes sharing time
on the OS, data set, data structure and
encoding of the algorithm etc.

Lect 19 Goutam Biswas

C Programming 16✬

✫

✩

✪

Execution Time Abstraction

It is necessary to get an abstract view of the
execution time, to compare different algorithms,
that essentially depends on the algorithm and
the data structure.

Lect 19 Goutam Biswas

C Programming 17✬

✫

✩

✪

Execution of selectionSort()

If there are n data, the for-loop in the function
selectionSort(), is executed (n− 1) times
([i : 0 · · · (n− 2)]), so the number of
assignments, array acess, comparison and call
to indexOfMax() are all approximately
proportional to the data count, na.

aIt is difficult to get the exact count of these operations from the high-level

coding of the algorithm.

Lect 19 Goutam Biswas

C Programming 18✬

✫

✩

✪

Execution of indexOfMax()

For each value of i in the for-loop of

selectionSort() there is a call to indexOfMax()

(low ← i)

• Corresponding to each call the for-loop of

indexOfMax() is executed high − low − 1

= (n− 1)− i− 1 = n− i− 2 times.

• The total number of comparisons for each i

inside indexOfMax(), are

2(n− i− 2) + 1 = 2n− 2i− 3.

Lect 19 Goutam Biswas

C Programming 19✬

✫

✩

✪

• The number of assignments are

3n− 3i− 6 + 3 = 3n− 3i− 3.

• And the number of array access are

2n− 2i− 2 + 1 = 2n− 2i− 1.

Lect 19 Goutam Biswas

C Programming 20✬

✫

✩

✪

Execution Time

• The total number of comparisons both in

selectionSort() and indexOfMax() is

n+
∑

n−2
i=0

(2n− 2i− 3) = n+ 2n(n− 1)−

(n− 1)(n− 2)− 3(n− 1) = n2 − n+ 1.

• Similarly we can calculate total number of

assignments and array access.

Lect 19 Goutam Biswas

C Programming 21✬

✫

✩

✪

Execution Time

Different operations have different costs, that
makes the execution time a complex function of
n. But for a large value of n (data count), the
number of each operation is approximately
proportional to n2.

Lect 19 Goutam Biswas

C Programming 22✬

✫

✩

✪

Execution Time

If we assume identical costs for each of these

operations (abstraction), the running time of

selection sort is approximately proportional to

n2a.

This roughly means that the running time of
selection sort algorithm will be four times if the
data count is doubled.

a
n is the number of data to be sorted.

Lect 19 Goutam Biswas

C Programming 23✬

✫

✩

✪

Time Complexity

We say that the running time or the time
complexity of selection sort is of order n2,
Θ(n2). We shall define this notion precisely.

Lect 19 Goutam Biswas

C Programming 24✬

✫

✩

✪

Space Complexity

The extra space requirement for selection sort
does not depend on n for this implementation.
What ever be the value of n we are using only
half a dozen of extra variables e.g. cgpa[],
low, high, max, ...

Lect 19 Goutam Biswas

C Programming 25✬

✫

✩

✪

Selection Sort with Recursion

Lect 19 Goutam Biswas

C Programming 26✬

✫

✩

✪

int indexOfMax(double cgpa[],int low,int high) {

int max ;

if(low == high) return low;

max = indexOfMax(cgpa,low+1,high);

if(cgpa[low] > cgpa[max]) return low ;

return max;

} // selSort.c

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void selectionSort(double cgpa[], int noOfStdnt) {

int i ;

for(i = 0; i < noOfStdnt - 1; ++i) {

int max = indexOfMax(cgpa, i, noOfStdnt-1);

Lect 19 Goutam Biswas

C Programming 27✬

✫

✩

✪

double temp ;

EXCH(cgpa[i], cgpa[max], temp);

}

} // selSort2.c

Lect 19 Goutam Biswas

C Programming 28✬

✫

✩

✪

Space Complexity

In the recursive version, the volume of extra
space depends on the number of data elements
due to recursive calls. It is roughly proportional
to n.

Lect 19 Goutam Biswas

C Programming 29✬

✫

✩

✪

Selection Sort: a Single Function

Lect 19 Goutam Biswas

C Programming 30✬

✫

✩

✪

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void selectionSort(double cgpa[], int noOfStdnt) {

int i ;

for(i = 0; i < noOfStdnt - 1; ++i) {

int max, j ;

double temp ;

temp = cgpa[i] ;

max = i ;

for(j = i+1; j < noOfStdnt; ++j)

if(cgpa[j] > temp) {

temp = cgpa[j] ;

max = j ;

Lect 19 Goutam Biswas

C Programming 31✬

✫

✩

✪

}

EXCH(cgpa[i], cgpa[max], temp);

}

} // selSort1.c

Lect 19 Goutam Biswas

C Programming 32✬

✫

✩

✪

Note

We shall introduce the notation of upper bound
(O), lower bound (Ω) and order (Θ) of
non-decreasing positive real-valued functionsa.
These notations are useful to express the
running time and space usages of algorithms.

aOur actual domain is N, but we shall take it as positive reals while drawing

the graph.

Lect 19 Goutam Biswas

C Programming 33✬

✫

✩

✪

Big O: Asymptotic Upper Bound

Consider two functions f, g : N −→ R
+. We say

that f(n) is O(g(n)) or f(n) ∈ O(g(n)) or
f(n) = O(g(n)), if there are two positive
constants c and n0 such that 0 ≤ f(n) ≤ cg(n),
for all n ≥ n0.
g(n) is called an upper bound of f(n).

Lect 19 Goutam Biswas

C Programming 34✬

✫

✩

✪

Ω: Asymptotic Lower Bound

Consider two functions f, h : N −→ R
+. We say

that f(n) is Ω(h(n)) (f(n) ∈ Ω(h(n)) or
f(n) = Ω(h(n))), if there are two positive
constants c and n0 such that 0 ≤ ch(n) ≤ f(n),
for all n ≥ n0.
h(n) is called a lower bound of f(n).

Lect 19 Goutam Biswas

C Programming 35✬

✫

✩

✪
0

cg(n) f(n)

n nn
1

kh(n)

Lect 19 Goutam Biswas

C Programming 36✬

✫

✩

✪

cg(n)
f(n)

n
0 nn

1

kh(n)

Lect 19 Goutam Biswas

C Programming 37✬

✫

✩

✪

Examples

• n2 + n+ 5 = O(n2): It is easy to verify that

2n2 ≥ n2 + n+ 5 for all n ≥ 3 i.e. c = 2 and

n0 = 3.

• n2 + n+ 5 6= O(n) and

• n2 + n+ 5 = O(n3), O(n4), · · · .

Lect 19 Goutam Biswas

C Programming 38✬

✫

✩

✪

Examples

• n2 + n+ 5 = Ω(n2): It is easy to verify that
n
2

2
< n2 + n+ 5 for all n i.e. c = 0.5 and

n0 = 0.

• n2 + n+ 5 = Ω(n), Ω(n log n), Ω(log n) and

• n2 + n+ 5 6= Ω(n3),Ω(n4), · · · .

Lect 19 Goutam Biswas

C Programming 39✬

✫

✩

✪

Big Θ: Asymptotically Tight Bound

Consider two functions f, g : N −→ R
+. We say

f(n) = Θ(g(n)), if there are three positive

constants c1, c2 and n0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n),

for all n ≥ n0.
g(n) is an asymptotically tight bound of f(n)
or g(n) is of order f(n).
f(n) = Θ(g(n)) is equivalent to f(n) = O(g(n))
and g(n) = O(f(n)).

Lect 19 Goutam Biswas

C Programming 40✬

✫

✩

✪

f(n)

n
0 n

c g(n)
0c g(n)

1

Lect 19 Goutam Biswas

C Programming 41✬

✫

✩

✪

Examples

• g(n) = n2 + n+ 5 = Θ(n2), take c1 =
1

3
,

c2 = 1 and n0 = 2.

n 0 1 2 3 · · ·

1

3
g(n) 5

3

7

3

11

3

17

3
· · ·

n2 0 1 4 9 · · ·

• But n2 + n+ 5 6= Θ(n3), Θ(n), · · · .

Lect 19 Goutam Biswas

C Programming 42✬

✫

✩

✪

Selection Sort

Running time of selection sort is Θ(n2) and the
space requirement is Θ(1) (no-recursive), where
n is the number of data to sort.

Lect 19 Goutam Biswas

C Programming 43✬

✫

✩

✪

Note

Let n be the size of the input. The worst case

running time of an algorithm is

• Θ(n) implies that it takes almost double the

time if the input size is doubled;

• Θ(n2) implies that it takes almost four times

the time if the input is doubled;

• Θ(log n) implies that it takes a constant

amount of extra time if the input is doubled;

Lect 19 Goutam Biswas

C Programming 44✬

✫

✩

✪

Insertion Sort

Lect 19 Goutam Biswas

C Programming 45✬

✫

✩

✪

6.5 7.5 8.5 9.0 7.0
0 1 2 43 5 6

6.5 7.5 8.5 9.0 7.0
0 2 43 5 6

temp

1

temp

7.5 8.5 9.0 7.0
0 43 5 6

2

1

7.5 8.5 9.0 7.0
0 4 5 6

3

2
temp

1

7.5 8.5 9.0 7.0
0 5 6

3

21

4

8.5

8.5

8.0

8.0

8.0

7

7

7

7

7

Unsorted Data

1st Step

2nd Step

2nd Step

After 2nd Step

8.5

6.5

8.0

3 4

8.5

7.5

7.5

8.5

7.5 6.5

7.5 6.5 8.0

8.5 8.0 7.5 6.5

Lect 19 Goutam Biswas

C Programming 46✬

✫

✩

✪

Insertion Sort Algorithm

for i ← 1 to noOfStdnt −1 do

temp ← cgpa[i]

for j ← i-1 downto 0 do

if cgpa[j] < temp

cgpa[j+1] ← cgpa[j]

else go out of loop

endFor

cgpa[j+1] ← temp

endFor

Lect 19 Goutam Biswas

C Programming 47✬

✫

✩

✪

C Program

Lect 19 Goutam Biswas

C Programming 48✬

✫

✩

✪

void insertionSort(double cgpa[], int noOfStdnt){

int i, j ;

for(i=1; i < noOfStdnt; ++i) {

double temp = cgpa[i] ;

for(j = i-1; j >= 0; --j) {

if(cgpa[j]<temp) cgpa[j+1]=cgpa[j];

else break ;

}

cgpa[j+1] = temp ;

}

} // insertionSort.c

Lect 19 Goutam Biswas

C Programming 49✬

✫

✩

✪

Execution Time

Let n be the number of data. The outer

for-loop will always be executed n− 1 times.

The number of times the inner for-loop is
executed depends on data. It is entered at least
once but the maximum number of execution
may be i.

Lect 19 Goutam Biswas

C Programming 50✬

✫

✩

✪

Execution Time

If for most of the values of i, 0 ≤ i < n, the
inner loop is executed near the minimum value
(for an almost sorted data), the execution time
will be almost proportional to n i.e. linear in n.

Lect 19 Goutam Biswas

C Programming 51✬

✫

✩

✪

Worst Case Execution Time

But in the worst case, The inner for-loop will

be executed
n−1∑

i=1

i =
n(n− 1)

2
= Θ(n2)

times. So the running time of insertion sort is
O(n2), the worst case running is Θ(n2), the best
case running time is Θ(n).

Lect 19 Goutam Biswas

C Programming 52✬

✫

✩

✪

Extra Space for Computation

The extra space required for the computation of
insertion sort does not depend on number of
data. It is Θ(1) (so it is also O(1) and Ω(1)).

Lect 19 Goutam Biswas

C Programming 53✬

✫

✩

✪

Bubble Sort

Lect 19 Goutam Biswas

C Programming 54✬

✫

✩

✪

0 1 2 3 4 5 6 7
53 22 49 15 21 82

0 1 2 3 4 5 6 7
53 22 49 15 21 16

0 1 2 3 4 5 6 7
53 22 49 15 37 16

0 1 2 3 4 5 6 7
53 22 49 37 16

0 1 2 3 4 5 6 7
53 22 37 16

no−exchange

i = 0

j = 7

j = 6

no−exchange

exchange

37 16

82 37

21 82

21

exchange

8215

15 21

exchange

8249

0 1 2 3 4 5 6 7
53 37 16211549

exchange

8222

0 1 2 3 4 5 6 7
37 162115492253 82

exchange
0 1 2 3 4 5 6 7

37 16211549225382

j = 5

j = 4

j = 3

j = 2

j = 1

Lect 19 Goutam Biswas

C Programming 55✬

✫

✩

✪

Bubble Sort Algorithm

for i ← 0 to noOfStdnt −2 do

exchange = NO

for j ← noOfStdnt −1 downto i +1 do

if (cgpa[j-1] < cgpa[j])

cgpa[j-1] ↔ cgpa[j] # Exchange

exchange = YES

endFor

if (exchange == NO) break

endFor

Lect 19 Goutam Biswas

C Programming 56✬

✫

✩

✪

C Program

Lect 19 Goutam Biswas

C Programming 57✬

✫

✩

✪

#define EXCHANGE 0

#define NOEXCHANGE 1

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void bubbleSort(double cgpa[], int noOfStdnt) {

int i, j, exchange, temp ;

for(i=0; i < noOfStdnt - 1; ++i) {

exchange = NOEXCHANGE ;

for(j = noOfStdnt - 1; j > i; --j)

if(cgpa[j-1] < cgpa[j]) {

EXCH(cgpa[j-1], cgpa[j], temp);

exchange = EXCHANGE ;

}

if(exchange) break ;

Lect 19 Goutam Biswas

C Programming 58✬

✫

✩

✪

}

} // bubbleSort.c

Lect 19 Goutam Biswas

C Programming 59✬

✫

✩

✪

Execution Time

The number of times the outer for-loop is
executed depends on the input data, as there is
a conditional break. If the data is sorted in the
desired order, there is no exchange, and in the
best case the outer loop is executed only once.
This makes the best running time of bubble
sort approximately proportional to n.

Lect 19 Goutam Biswas

C Programming 60✬

✫

✩

✪

Execution Time and Space

But in the worst case the outer loop is executed

n− 1 times. The inner loop is executed

(n− 1)− i times for every value of i. So in the

worst case, the total number of times the inner

loop is executed is

n−1∑

i=0

(n− 1)− i =
n(n− 1)

2
= Θ(n2)

times.

Lect 19 Goutam Biswas

C Programming 61✬

✫

✩

✪

Worst Case Complexity

• The running time of bubble sort (worst case

time complexity) is O(n2) (quadratic in n).

• The extra storage requirement does not

depend on the size of data and the space

complexity is Θ(1).

Lect 19 Goutam Biswas

