C Programming

37

-

‘ Sequential Search I

key. The function sequentially searches the

the data in the array, it returns the

—1.

_

Write a function that takes n data stored in an
array of type int and an integer known as the

array for the key. If the key is present among

corresponding array index; otherwise it returns

~

/

Lect 18

Goutam Biswas

C Programming

38

/

S(all,n, k)

_

\

‘ Inductive Definition I

)
0, if al0] =k,

1 ifn=1,
—1, if S(a+1,n—1,k) = —1,
1+S(a+1,n—1,k), else

b, al0] # .

/

Lect 18

Goutam Biswas

C Programming 39

/ [terative C Function. \

#define NOTFOUND -1
int seqSearch(int datal], int noOfData,

int key)A

int 1 ;

for(i=0; i<noOfData; ++1i)
if(datal[i] == key) break ;

if (1 == noOfData) return NOTFOUND;

return 1;

} // seqSearchF.c
_ /

Lect 18 Goutam Biswas

C Programming 40

4 N
‘ Running Time I

In the best case the key may match with the

0" element of the array and the for-loop is

executed only once.

But in the worst case when either the match is
with a data at the end or there is no match, the
number of times the loop is executed is
proportional to n, the number of data.

_ /

Lect 18 Goutam Biswas

C Programming 41

/ Recursive C Function. \

#define NOTFOUND -1
int seqSearch(int datal],int nData,int key){

int temp ;

if (datal[0] == key) return O ;

if (nData == 1) return NOTFOUND ;
temp = seqSearch(data+l, nData-1, key]
if (temp == NOTFOUND) return NOTFOUND |

return temp + 1 ;

} // seqSearchFR.c
= /

N —g
-

Lect 18 Goutam Biswas

C Programming

42

_

~ 0 1 2 3 4
‘ayl 39| 26| 72| 4| 17
o7 t [ﬁ t / Return 2
1st call 5 72
data |nData| key temp? Return 1
2nd call 4 72
data |nData key temp> Return (
3rd call 3 79

data nData key temp
data[0] = key

/

Lect 18

Goutam Biswas

C Programming 43

4 N
‘ Running Time I

In the best case the key may match with the 0%

element of the array and there is only one call.

But in the worst case when either the match is
with a data at the end or there is no match, the
number of times the function is called is
proportional to n, the number of data.

_ /

Lect 18 Goutam Biswas

C Programming

44

-

‘Extra, Space Usagel

The number of stack frames (activation

O(1).

_

records) used by the recursive function is also

proportional to n, the space complexity is O(n).
Whereas the iterative function uses constant
amount of extra space, the space complexity is

/

Lect 18

Goutam Biswas

C Programming 47

4 N

Better Search I

Search for a key can be made more efficient if
the data stored in the array are sorted in some
order. Let us assume that the data is stored in
ascending order.

_ /

Lect 18 Goutam Biswas

C Programming 48

‘Binary Search: an Inductive Deﬁnition'

.

z | = h & afl] = k.
—1 l=h&all] #k
bS(a, 1, h, k) = ¢ all] 7 k.
bS(a,l,m,k) | < h&k<alm|
 bS(a,m+ 1,k k) I <h&k>alm]

where [1s the low-index, A i1s the high index, &

is the key to search and m = #

_ /

Lect 18 Goutam Biswas

C Programming

49

-~

[terative C Function'

int binarySearch(int datal], int 1,
int h, int key) {
while(1 != h) {
int m = (1+h)/2;
if(key <= datalm]) h =m ;
else 1 = m+1 ;
¥
if (key == datal[l]) return 1 ;
return -1;
+ // binarySearchF.c

_

/

Lect 18

Goutam Biswas

C Programming 50

4 N

‘ Running Time I

If there are n data, the while-loop is executed
at most log, n 4+ 1 times. For a large value of n
this gives a definite advantage over sequential
search that executes the loop almost n times on
a ‘bad’ data set. But then in case of binary
search, sorted data is required.

_ /

Lect 18 Goutam Biswas

Lect 18

C Programming

/

Recursive C Function. \

if(1 == h) {
if (datal[l] == key) return 1 ;
else return -1

)

T
if(1 < h) {
int m = (1+h)/2 ;
if (data[m] >= key)
return binarySearch(data, 1, m, key);
else return binarySearch(data, m+1, h, key)
¥

int binarySearch(int datal], int 1, int h, int key

\\i// binarySearchR.c)//

51

) o

Goutam Biswas

C Programming 52

/ ‘ Running Time I \

Let there are n data. We assume that n = 2%

for the ease of calculation. If ¢,, be the running
time of recursive binary-search, then the
inductive definition of ¢, is

Co itn=1
by =

tn/g C1 it n > 1.

The solution of this recurrence relation is
co + kci, so the running time of binary-search is

\proportional to k = log, n. /

Lect 18 Goutam Biswas

