
C Programming 37✬

✫

✩

✪

Sequential Search

Write a function that takes n data stored in an
array of type int and an integer known as the
key. The function sequentially searches the
array for the key. If the key is present among
the data in the array, it returns the
corresponding array index; otherwise it returns
−1.

Lect 18 Goutam Biswas



C Programming 38✬

✫

✩

✪

Inductive Definition

S(a[], n, k) =



























0, if a[0] = k,

−1, if n = 1,

−1, if S(a+ 1, n− 1, k) = −1,

1 + S(a+ 1, n− 1, k), else















, a[0] 6= k.

Lect 18 Goutam Biswas



C Programming 39✬

✫

✩

✪

Iterative C Function

#define NOTFOUND -1

int seqSearch(int data[], int noOfData,

int key){

int i ;

for(i=0; i<noOfData; ++i)

if(data[i] == key) break ;

if(i == noOfData) return NOTFOUND;

return i;

} // seqSearchF.c

Lect 18 Goutam Biswas



C Programming 40✬

✫

✩

✪

Running Time

In the best case the key may match with the

0th element of the array and the for-loop is

executed only once.

But in the worst case when either the match is
with a data at the end or there is no match, the
number of times the loop is executed is
proportional to n, the number of data.

Lect 18 Goutam Biswas



C Programming 41✬

✫

✩

✪

Recursive C Function

#define NOTFOUND -1

int seqSearch(int data[],int nData,int key){

int temp ;

if(data[0] == key) return 0 ;

if(nData == 1) return NOTFOUND ;

temp = seqSearch(data+1, nData-1, key) ;

if(temp == NOTFOUND) return NOTFOUND ;

return temp + 1 ;

} // seqSearchFR.c

Lect 18 Goutam Biswas



C Programming 42✬

✫

✩

✪

0 1 2 3 4

a 39 26 72 4 17

1st call

tempkeynDatadata

725

tempkeynDatadata

7242nd call

data nData key temp

7233rd call

data[0] = key

Return 0

Return 1

Return 2

Lect 18 Goutam Biswas



C Programming 43✬

✫

✩

✪

Running Time

In the best case the key may match with the 0th

element of the array and there is only one call.

But in the worst case when either the match is
with a data at the end or there is no match, the
number of times the function is called is
proportional to n, the number of data.

Lect 18 Goutam Biswas



C Programming 44✬

✫

✩

✪

Extra Space Usage

The number of stack frames (activation
records) used by the recursive function is also
proportional to n, the space complexity is O(n).
Whereas the iterative function uses constant
amount of extra space, the space complexity is
O(1).

Lect 18 Goutam Biswas



C Programming 47✬

✫

✩

✪

Better Search

Search for a key can be made more efficient if
the data stored in the array are sorted in some
order. Let us assume that the data is stored in
ascending order.

Lect 18 Goutam Biswas



C Programming 48✬

✫

✩

✪

Binary Search: an Inductive Definition

bS(a, l, h, k) =



























l l = h & a[l] = k,

−1 l = h & a[l] 6= k,

bS(a, l,m, k) l < h & k ≤ a[m]

bS(a,m+ 1, h, k) l < h & k > a[m]

where l is the low-index, h is the high index, k
is the key to search and m = l+h

2
.

Lect 18 Goutam Biswas



C Programming 49✬

✫

✩

✪

Iterative C Function

int binarySearch(int data[], int l,

int h, int key) {

while(l != h) {

int m = (l+h)/2;

if(key <= data[m]) h = m ;

else l = m+1 ;

}

if(key == data[l]) return l ;

return -1;

} // binarySearchF.c

Lect 18 Goutam Biswas



C Programming 50✬

✫

✩

✪

Running Time

If there are n data, the while-loop is executed
at most log2 n+ 1 times. For a large value of n
this gives a definite advantage over sequential
search that executes the loop almost n times on
a ‘bad’ data set. But then in case of binary
search, sorted data is required.

Lect 18 Goutam Biswas



C Programming 51✬

✫

✩

✪

Recursive C Function

int binarySearch(int data[], int l, int h, int key) {

if(l == h) {

if(data[l] == key) return l ;

else return -1 ;

}

if(l < h) {

int m = (l+h)/2 ;

if(data[m] >= key)

return binarySearch(data, l, m, key);

else return binarySearch(data, m+1, h, key);

}

} // binarySearchR.c

Lect 18 Goutam Biswas



C Programming 52✬

✫

✩

✪

Running Time

Let there are n data. We assume that n = 2k

for the ease of calculation. If tn be the running

time of recursive binary-search, then the

inductive definition of tn is

tn =







c0 if n = 1

tn/2 + c1 if n > 1.

The solution of this recurrence relation is
c0 + kc1, so the running time of binary-search is
proportional to k = log2 n.

Lect 18 Goutam Biswas


