C Programming 1

4 N

Inefficient Recursive Function.

Direct Coding of function from an inductive
definition may be very ineflicient.

_ /

Lect 17 Goutam Biswas

C Programming

/

Fibonacci Sequence : An Examplel

Consider the Fibonacci® Sequence.

(f

0123456 7 &8 9 10 ---

fib(n)

011235 8 13 21 34 55

_

2Leonardo Pisano Fibonacci (1170 - 1250 (7), Pisa)

/

Lect 17

Goutam Biswas

C Programming 3

‘ Inductive Definition I

The inductive definition of the n!” term of the

sequence 1S

n, it 0 <n <2,

ﬁbn_l -+ ﬁbn_g, if n Z 2.

fib,, =

_ /

Lect 17 Goutam Biswas

C Programming 4

4 N
‘ C Function I

The definition can be directly coded as a C

function.

int fibr(int n){ // fibonacciFR1l.c
if(n < 2) return n ;
return fibr(n-1) + fibr(n-2) ;
}

_ /

Lect 17 Goutam Biswas

C Programming 5

4 N

‘The Call Tree: n = 5.

The call sequence for n = 5 is as follows.

_ /

Lect 17 Goutam Biswas

C Programming

1 fibr(5
yap.
2 fibr(4)
—
3" fibr(3)
P
/1 fibr(2)
5 +

/

Goutam Biswas

C Programming 7

_ /

Lect 17 Goutam Biswas

C Programming

Goutam Biswas

Lect 17

C Programming

e

_—
2 fibr(4)

i

f| br(2)
10

4 fib
/4 I| r(\j\ flbr(l) flbr(l)nbr(o)

1 f ler(S]

Lect 17

Goutam Biswas

C Programming

10

_

Call Tree '

1 fifr(S)
ot u
2 fibr(4) fibr(f)

15

T8 12 "~

3 fibr(3) fibr(2) fib|r(2) fibr(1

|
>
4f|br(2)f|br(1)f ﬁ ’/13 r(O)@>

e

fibr(1) fibr(0)

9/+
(

/

Lect 17

Goutam Biswas

C Programming 11

~ R

Fifteen calls are made and seven additions are

performed. This could have been done by only

four additions in a iterative program.

n 012 3 4 5
fibr(n) |0 1 1 2 3 5

op | | | |

_ /

Goutam Biswas

Lect 17

C Programming

12

-~

274 Fibonacci number three times etc.

_

The main problem is the re-computation of the
same result again and again. To compute the

value of the 5" Fibonacci number, the function
computes the 3¢ Fibonacci number twice, the

/

Lect 17

Goutam Biswas

C Programming

/

_

the following table.

The number of additions to compute the n'

n (01 2 3 4 5 6
fib,, |0 1 2 3 5 8
add,, |0 0 2 4 7 12

h

Fibonacci number in this function is given in

/

Lect 17

13

Goutam Biswas

C Programming

14

/

_

add,, = <

addn_l addn_z
— ﬁbn+1 — 1

itn=0,1,

itn>1

/

Lect 17

Goutam Biswas

C Programming 15

4 N

If the tunction is called with n as parameter,
there may be n + 1 activation records (stack
frames) present on the stack. Compared to this
there are only constant number of variables in
the iterative program.

_ /

Lect 17 Goutam Biswas

C Programming 16

‘A nonRecursive C Function'

int fib(int n){ // fibonacciF.c
int £f0=0, f1=1, 1;

if(n < 2) return n ;
for(i=2;i<=n;++i) f1 += f0, f0 = f1 -|£f0;

return f1 ;

“

_ /

Lect 17 Goutam Biswas

C Programming

17

-~

‘An Efficient Recursive Function.

compute like the iterative program. This

corresponding to fib(0) and fib(1).

_

We can write a recursive C function that will

function has three parameters and is called as
fib(n, 0, 1), where O and 1 are base values

/

Lect 17

Goutam Biswas

C Programming

18

/

_

‘Efﬁcient Recursive Function'

int fib(int n, int f0, int f1) {

if(n == 0) return fO ;
if(n == 1) return f1 ;
return fib(n-1, f1, f1+£f0);

/

Lect 17

Goutam Biswas

C Programming

19

/

_

1st call

2nd call
3rd call
4th call
5th call

/

Lect 17

Goutam Biswas

C Programming 20

4 Progran) A

#include <stdio.h>
int fib(int, int, int) ;
int main(){ // fibonacciFR2.c

int n ;

printf ("Enter a non-ve integer: ") ;
scanf ("%d", &n) ;
printf ("fib(%d)=%d\n" ,n,fib(n,0,1));

\\‘ return O; 4//

Lect 17 Goutam Biswas

C Programming

21

/

-

int fib(int n, int £0, int f1) {

if(n == 0) return fO ;
if(n == 1) return f1 ;
return fib(n-1, f1, f1+£f0);

/

Lect 17

Goutam Biswas

C Programming 22

4 N
‘ Static Variable I

e A static variable name is local to the

function. It is not directly visible from out

side.

e But unlike an automatic variable, it does not
evaporate when the control comes out of the
function. It remains dormant with its

current value frozen.

_ /

Lect 17 Goutam Biswas

C Programming 23

4 N
‘ Static Variable '

e If the function is invoked again, the static

variable 1s available with its last updated

value.

e It is not initialized every time the function is
called.

e [t does not have a new binding at every call.

It 1s not allocated on the stack.

_ /

Lect 17 Goutam Biswas

C Programming

24

/

‘An Efficient Recursive Function'

We can write a recursive C function with a
dynamics similar to the previous one using
static variables®. This function takes one
parameter fib(n).

@This function is not thread safe in a multi threading environment.

_

/

Lect 17

Goutam Biswas

C Programming 25

4 N

int fib(int n) {
static int f0=0, f1=1;

if(n == 0) return fO ;

if(n == 1) { // why this step?
int temp = f1 ;
£0 = 0, f1 = 1;
return temp ;

+

f1 += £f0, £f0 = f1 - £0;

return fib(n-1);

} // fibonacciFR3.c

_ /

Lect 17 Goutam Biswas

C Programming

26

/

_

Static Initialized

1st Call fibReclter(5) - 1]

flbO fibl

ond Call fibReclter(4) 1 1
N

3rd Call fibReclter(3) 1 2

4th Call fibReclter(2) 5 3

5th Call fibReclter(1) 3 5

~

/

Lect 17

Goutam Biswas

C Programming 27

//;include <stdio.h> ‘\\

int fib(int) ;
int main() // fibonacciFR3.c

{
int n ;
printf ("Enter a non-ve integer: ") ;
scanf ("%d", &n) ;
printf("fib(%d) = %d\n", n, fib(n)) ;
return O;

¥

int fib(int n) {
static int f£0=0, f1=1;

_ /

Lect 17 Goutam Biswas

C Programming 28

4 N

if(n == 0) return fO ;

if(n == 1) { // why this step?
int temp = f1 ;
fO = 0, f1 = 1;
return temp ;

}

f1 += fO0, fO0 = f1 - £O;

return fib(n-1);

- /

Lect 17 Goutam Biswas

C Programming 29

4 N

‘ (GGlobal Variable I

Similar function can be written using global
variable. But we strongly discourage it.

_ /

Lect 17 Goutam Biswas

C Programming 30

4 N

Consider the following inductive definition of
the number of choices of r distinct objects from

a collection of n distinct objects,

(n)_ 1, iftn=rorr=20,
r ("N + (")), f0<r<n.

r—1

_ /

Lect 17 Goutam Biswas

C Programming 31

4 N

Verify that a direct encoding of this definition
to a C function is very ineflicient. Use the
concept of Pascal’s triangle and an 1-D array of

type int to compute (Z) efficiently:.

_ /

Lect 17 Goutam Biswas

C Programming

32

/

_

Pascal’s Triangle for (")

r—|10 1 2 3 4 56 7
0 |1

1|1 1

2 |1 2 1

3 /1 3 3 1

4 |1 4N, 6L 4 1

5 11 5 10 10 5 1

6 |1 6 15 20 15 6 1
n T

/

Lect 17

Goutam Biswas

C Programming

33

-

_

e One row of the Pascal’s Triangle can be

stored in a 1-D array of positive integers.

o (") forallr,0 <r<n+1, can be

r

computed from (7;) for all r, 0 <r <n.

e The same array can be reused.

/

Lect 17

Goutam Biswas

C Programming

34

5):1

‘ Computation: An Examplel

D

10

10

D

11...

[}

15

20

15

Goutam Biswas

