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‘ Programming with Indexed Variables'
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Variable with One Index: I

. what(...) {

int al[10]

)

(What does the declaration mean?)

~
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e It is an I-dimensional array of ten locations,

each of type int.

e Compiler generates machine code so that
every time the function what () is invoked
(called), there will be an allocation of 10
consecutive locations of type int. The

locations are destroyed when the control

\ returns from the function. /
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Meaning I

e The total space allocated is

10 X sizeof (int). If the size of an int

location 1s 4-bytes, the total allocated space
is 40-bytes.

e The locations are indexed by 0 to 9.
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Meaning I

e The name a of the array is a constant

expression, whose value is the address of the

0" location.

e The " location may be treated as an
indexed variable al[i], 0 < ¢ < 102,

@The C compiler does not stop you going beyond the index 9, but there may

be serious run-time error.
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Meaning I

The array a[] is local to the function what ()
and its space is allocated in the stack frame

(activation record) of the function.
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a 9]
a 8]
a ]
a 6]

Allocated In a5
the stack region af 43

a 3]
a 2]
a 1]
a 0]

> a
address of location alOl =~~~
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a

a

a

(I-value).

2]

(3]1]

Indexed Variable I \

Let e be an integer expression whose value v is
within the range 0 to 9, ale] refers to the ¢!
location of the array. ale] is treated as a

variable with its content (r-value) and address

alll =1 ;
6 - 2xal[1] ;

h

a[2+al1]] + 10 ;

/
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Indexed Variable '

If v is not within the range [0--- 9], an access to

ale] may give a run-time error. But normally a
C compiler, unlike Pascal or Python, does not
check for array index bound.
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Array Name I

The array name a is an expression but it is not

bound to a location so, no value can be

assigned to it.

int al[10] ;

a=.... // Illegal

\_ /
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Array Name I

#include <stdio.h>

int main() // arrayName.c

{
int a[10] ;
a = (int *)100 ;
return O;

¥

$ cc -Wall arrayName.c

error: 1ncompatible types 1n assignment

\_

arrayName.c: In function ‘main’: arrayName.c:9:

/
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Array Name I

It was mentioned earlier, that the value of a is

the address of the 0" location i.e.

a 1s equivalent to &a[0] and

*a 1s equivalent to a[0].
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/ ‘Array and Pointer' \

The expression a+e is the address of the

location ale] i.e. &ale] = (a+e), and *(a+e)
1S same as ale].
Address Pointer

a = at0 = &al[0] xa = a[0]

atl = &al[1] x(a+1) = a[1]

a+2 = &al[2’ x(a+2) = al[2]

. y
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‘Array and Pointerl

The " location of a 1-D array a[] of type int
starts from the address
(unsigned)a + 1*sizeof (int)®.

The (unsigned)a makes the address an unsigned integer. We shall not use

it explicitly to make the expression look clean.
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‘Array and Pointer'

Location | Starting Address
0th a
157 a + sizeof(int)
ond a + 2xsizeof(int)
gth a + 1xsizeof (int)
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‘ Pointer Arithmetic '

As the value of sizeof() depends on data type,
the meaning of a + i also changes depending
on the type of al].

\_
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/ ‘ Pointer Arithmetic I \

#include <stdio.h>

int main(){ // ptrArithl.c
char c[5], *cP;
int 1i[5], *iP;
double d[5], *dP ;

printf ("c: %p,\t\ti: %p,\t\td: %p\n", c, i, d) ;
printf ("c+1: Y%p,\ti+l: %p,\td+1l: Yp\n", c+1, i+1, d
\\\ printf ("c+2: Yp,\ti+2: %p,\td+2: %p\n", c+2;/}+2, d
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printf("c+10: %p,\ti+10: %p,\td+10:

cP =c¢, 1P = 1, dP = d;

printf ("\ncP: %p,\t\tiP: %p,\t\tdP: %p\n", cP|
printf ("cP+1: %p,\tiP+1: %p,\tdP+1: %p\n", cP+
printf ("cP+2: %p,\tiP+2: %p,\tdP+2: Yp\n", cP+

printf ("cP+10: %p,\tiP+10: %p,\tdP+10: %p\n",
cP = (char *)0, iP = (int *)0, dP = (double *)

printf ("\ncP: %p,\tiP: %p,\tdP: %p\n", cP,

printf ("cP+10: %p,\tiP+10: %p,\tdP+10: %p\n",

/

Lect 16

iP |
printf ("cP+1: Yp,\tiP+1: %p,\tdP+1: %p\n", cP+
printf ("cP+2: %p,\tiP+2: %p,\tdP+2: Yp\n", cP+

18

%p\n“,zlﬁo, i+

iP,
1, 1P
2, 1P
cP+10

1, 1P
2, 1P
cP+10
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return O;
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‘Array and Pointer'

We can write,
(x(ate)) = &ale] = a+e, and
x(&ale]) = *(at+te) = ale].

The *x and & operators are inverse to each
other.

\_

/
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‘ Pointer Arithmetic I

The address of an element of a 1-D array can

be assigned to a pointer variable of appropriate
type and the array elements can be accessed

using the pointer variable. This in general is

[not a good programming practice}
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Int a[10], *IP ;
IP=a+2;

IP

a 9]

a8

a 7]

a 6]

a 9]

a 4]

a 3]

|

a 1]

a0]

OFRELZ Wb oo~ O

/
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‘ Pointer Arithmetic '

#include <stdio.h>
int main() // ptrArith2.c

int al10] = {0, 10, 20, 30, 40, 50,
60, 70, 80, 90}, *iP ;

1P = a + 2;

printf ("al[2]: %d\t*xiP: J%d\t\tiP[0]: %d\n", alg4], *i
printf ("a[5]: %d\tx(iP+3): %d\tiP[3]: Jd\n", 4[5],

return O;

/
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4 Example I h

Write a C program that

1. reads a positive integer n (n < MAXSIZE);

2. reads n integers in an array of type int starting from
the index 0;

3. prints the data present in the array from the index 0;

4. reverses the data positions in the array
datali] < datal[n-1-i],

5. again prints the data present in the array from the

\ index 0. /
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‘ C Program I
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/<;include <stdio.h>

\_

#define MAXSIZE 100
int main()

{ // revArray.c

int noOfData, data[MAXSIZE], i, halfNo ;

printf ("Enter the No. of Data (<= J%d): ",
MAXSIZE) ;
scanf ("%d", &noOfData) ;
printf ("\nEnter the Data\n") ;
for(i = 0; i < noOfData; ++i)
scanf ("%d", &datalil) ; // data+i

printf ("%d data present are\n", noOfData) ;1//

Lect 16
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for(i = 0; i < noOfData; ++i)

printf("%d ", datalil) ; // *(data+i)
halfNo = (noOfData - 1)/2 ;
for(i = 0; i <= halfNo; ++i) {

int temp ;

temp = datali] ;
datali] = datal[noOfData-1-i] ;
data[noOfData-1-i] = temp ;
by
printf ("\nData After Reversal\n") ;
for(i = 0; i < noOfData; ++i)
printf("%d ", datalil]) ;

~

/
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printf ("\n") ;

return O ;

/
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Another C Program'
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/<;include <stdio.h> ‘\\

#define MAXSIZE 100
int main() // revArray2.c

{

int noOfData, data[MAXSIZE], i, j ;

printf ("Enter the No. of Data (<= J%d): ",
MAXSIZE) ;
scanf ("%d", &noOfData) ;
printf ("\nEnter the Data\n") ;
for(i = 0; i < noOfData; ++i)
scanf ("%d", &datalil) ; // data+i

\\\ printf ("%d data present are\n", noOfData) ;1//
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for(i = 0; i < noOfData; ++i)
printf("%d ", datalil) ; // *(data+i)
for(i = 0, j=noOfData-1; i < j; ++i, —-j) {

int temp ;

temp = datali] ;
datali] = datalj] ;
datalj]l = temp ;
+
printf ("\nData After Reversal\n") ;
for(i = 0; i < noOfData; ++i)
printf("%d ", datalil) ;

\\\ printf ("\n") ; 1//
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return O

)

/
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‘ Example I

Solve the previous problem by writing a
function to reverse the data in the array.
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e void reverseData(int [], int) ;

e The first parameter is the starting address of

e This function does not return any value, so

~

‘ Function Interface '

the array. This is equivalent to writing
int *. The second parameter is the number

of data present in the array:.

the return type is void.

/
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Command Abstraction I

The purpose of this function is to change the
content of different locations of the array. The
job is similar to that of a sequence of statements

or commands and not like an expression (does
not compute and return a value).

\_ /
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Command Abstraction I

This type of object is called a procedure or a
subprogram in programming languages like
Pascal or FORTRAN. But in C it also is called
a function. Here the function is an abstraction
of a sequence of commands.

\_ /

Lect 16 Goutam Biswas




C Programming 37

/ ‘Actual Parameters for an 1-D Array?' \

e It is necessary to access the array elements,

ale] within a called function.

e An array element can be accessed if its

address 1s known.

e The compiler can can generate code to
compute the address of ale] if it gets the

starting address of the array, the value of e,

and the size of each array element.

\_ /
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Address of an Array Element: ale] I

a-+ v XS

e ¢ is the starting address of the array,
e v is the value of the expression e.

e s is the size of each element of the array

\_ /
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‘ An Example I
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/<;include <stdio.h> ‘\\

int main() // arrayAddr.c

{

\_

int a[10] ;

printf("sizeof(int) = %u\n", sizeof(int));

printf ("Address of al[0]=%u:%u\n",
(unsigned)a, (unsigned)&al0]);

printf ("Address of all]=u:%u\n",
(unsigned)a+l*sizeof (int), (unsigned)&all

printf ("Address of a[2]=Yu:%u\n",
(unsigned)a+2*sizeof (int), (unsigned)&all

printf ("Address of al[7]=%u:%u\n",
(unsigned)a+7*sizeof (int), (unsigned)&al7

return 0 ; } )//

Lect 16
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‘AﬁRun'

$ ./a.out

sizeof(int) = 4

Address of al[0]=3220264176:3220264176
Address of al[1]=3220264180:3220264180
Address of al[2]=3220264184:3220264180
gddress of a[7]1=3220264204:3220264204

\_ /
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Address of an Array Element: ale] I

e The value of e is computed (compiler

generates coed for that).

e The size of an array element depends on its
type, the programming language, compiler
and the machine. But all these information

are known a priori.

\_ /
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Address of an Array Element: ale] I

In case of an 1-D array, the only unknown

within a called function (callee) is the starting
address of the array which has been declared in

the caller or even at a higher level.

So the only actual parameter passed in this
case is the starting address of the array.

\_ /
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‘Formal Parameter int x[] or int *XI

The formal parameter x receives the address of
an int location. It is usually treated as the
starting address of an 1-D array. But it is
essentially a pointer of type int.

\_ /
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‘Formal Parameter int x[] or int *XI

The language does not stop a programmer to
pass any address as the actual parameter, but
the result may be memory access violation
(segmentation fault) or incorrect value.

\_ /
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‘Passing an 1-D Array' \

#define MAXSIZE 100
void reverseData(int [], int); // Interface
int main()

{
int .... data[MAXSIZE], noOfData ;
..... reverseData(data, noOfData)
+
void reverseData(int x[], int dataCount) {
oxle] oo
+

/

Lect 16
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Z[[g g noOfData dataCount
a7 7 J > | J
a6 6 | .
a5 5 Int x[] or Int*x
o4 |4 — ]
a3 3
2|2 A
a1l 1
A0

" data, Callee

“~---  Caller main() reverseData()

\_
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‘ C Program I
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/<;include <stdio.h> ‘\\

#define MAXSIZE 100
void reverseData(int [], int);

{

\_

int main() // revArrayl.c

int noOfData, data[MAXSIZE], i ;

printf ("Enter the No. of Data (<= %d): ",
MAXSIZE) ;

scanf ("%d", &noOfData) ;

printf ("\nEnter the Data\n") ;

for(i=0; i<noOfData; ++i) scanf("/d", &datali]

printf ("%d data present are\n", noOfData) ;

for(i=0; i<noOfData; ++i) printf("%d ", datali

reverseData(data, noOfData) ; )//

Lect 16
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//, printf ("\nData After Reversal\n") ; ﬁ\\
for(i = 0; i < noOfData; ++i)
printf("%d ", datali]) ;

printf("\n") ;
return O;

t

void reverseData(int x[], int dataCount) {

int halfNo, 1 ;

halfNo = (dataCount - 1)/2 ;
for(i = 0; i <= halfNo; ++i) {
int temp ;

\\\ temp = x[i] ; )//
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x[i] = x[dataCount-1-i] ;
x [dataCount-1-i] = temp ;

- /
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‘Array and Pointer'

What will happen if the function
reverseData() is called as
reverseData(a+2, noOfData-2) ?

\_ /
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/ ‘ Array Initialization I \

/ *

* arraylnitl.c

*/
#include <stdio.h>
#define MAXSIZE 5
int main()

{

int a[MAXSIZE], b[MAXSIZE] = {0, 1, 2, 3, 4%},
c [MAXSIZE] = {10}, 1 ;
float x[MAXSIZE], z[MAXSIZE] = {10.0},
y [MAXSIZE] = {0, 10.1, 20, 30, 40};

\\\ for(i = 0; i < MAXSIZE; ++i) )//
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printf ("a[%d]=%d, \t\tb[%d]l=Vd, \tc [hd]l=/d\n",
i,ali],i,b[i],i,c[i]) ;

printf("\n") ;
for(i = 0; i < MAXSIZE; ++i)

printf ("x [%d]=%Ef,\t\ty [hd]l=Vf,\tz[/hd]=)f\n",
i, x[i], i, y[il, i, z[il) |

return 0 ;

~

/
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/ Size is Implicit' \

#include <stdio.h>
int main() // arraylnit2.c

{

int c[] = {100, 200}, b[]={10, 20} ;

int 1;

for(i = 0; 1 < 5; ++1)
printf ("b[%kd] = %d,\tcl[hd] = %d\n",
i, blil], i, clil) ;
printf ("\n") ;
return O;
\J /
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‘ Interesting Output I

./a.out

| 10, c[0]
20,c[1]
100,c[2]
200, c[3]
4.cl4] =

0

100

200
2
134513340

/
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‘ Memory Allocation I

i c(0] b[O]

O | 200 100| 20 | 10
cl1] b[1]
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‘ Space Allocation I

e T'wo locations of type int are allocated and
initialized to 10, 20 for b[ J.

e T'wo more locations are allocated and
initialized for c[ ] with 100, 200.

e One location is allocated for 1.

\_ /
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‘ Space Allocation I

e The compiler does not prohibit access to
b[2], b[3] or c[2], c[3].

e b[4] and 2[2] overlaps with i!

\_ /
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/ C Compiler Does Not Check for the Array Limit' \

e Beyond the limit you get meaningless data.

e There may be memory protection violation.

b[368] = 809330281,c[368] = 778121006
b[369] = 892549937,c[369] = 7632239

b [370. 1029636154,c[370] = 0
Segmentation fault (core dumped)

N /
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