C Programming 1

4 N

‘ Programming with Indexed Variables'

_ /

Lect 16 Goutam Biswas

C Programming

/

_

Variable with One Index: I

. what(...) {

int al[10]

)

(What does the declaration mean?)

~

/

Lect 16

Goutam Biswas

C Programming 3

4 i A

e It is an I-dimensional array of ten locations,

each of type int.

e Compiler generates machine code so that
every time the function what () is invoked
(called), there will be an allocation of 10
consecutive locations of type int. The

locations are destroyed when the control

\ returns from the function. /

Lect 16 Goutam Biswas

C Programming 4

4 N
Meaning I

e The total space allocated is

10 X sizeof (int). If the size of an int

location 1s 4-bytes, the total allocated space
is 40-bytes.

e The locations are indexed by 0 to 9.

_ /

Lect 16 Goutam Biswas

C Programming 5

4 N
Meaning I

e The name a of the array is a constant

expression, whose value is the address of the

0" location.

e The " location may be treated as an
indexed variable al[i], 0 < ¢ < 102,

@The C compiler does not stop you going beyond the index 9, but there may

be serious run-time error.

_ /

Lect 16 Goutam Biswas

C Programming 6

4 N

Meaning I

The array a[] is local to the function what ()
and its space is allocated in the stack frame

(activation record) of the function.

_ /

Lect 16 Goutam Biswas

C Programming 7

4 N

a 9]
a 8]
a]
a 6]

Allocated In a5
the stack region af 43

a 3]
a 2]
a 1]
a 0]

> a
address of location alOl =~~~

_ /

Lect 16 Goutam Biswas

O FLP N WDOI O N 00O O

constant,

C Programming

/

_

a

a

a

(I-value).

2]

(3]1]

Indexed Variable I \

Let e be an integer expression whose value v is
within the range 0 to 9, ale] refers to the ¢!
location of the array. ale] is treated as a

variable with its content (r-value) and address

alll =1 ;
6 - 2xal[1] ;

h

a[2+al1]] + 10 ;

/

Lect 16

Goutam Biswas

C Programming 9

4 N

Indexed Variable '

If v is not within the range [0--- 9], an access to

ale] may give a run-time error. But normally a
C compiler, unlike Pascal or Python, does not
check for array index bound.

_ /

Lect 16 Goutam Biswas

C Programming 10

4 N
Array Name I

The array name a is an expression but it is not

bound to a location so, no value can be

assigned to it.

int al[10] ;

a=.... // Illegal

_ /

Lect 16 Goutam Biswas

C Programming

11

/

Array Name I

#include <stdio.h>

int main() // arrayName.c

{
int a[10] ;
a = (int *)100 ;
return O;

¥

$ cc -Wall arrayName.c

error: 1ncompatible types 1n assignment

_

arrayName.c: In function ‘main’: arrayName.c:9:

/

Lect 16

Goutam Biswas

C Programming 12

4 N
Array Name I

It was mentioned earlier, that the value of a is

the address of the 0" location i.e.

a 1s equivalent to &a[0] and

*a 1s equivalent to a[0].

_ /

Lect 16 Goutam Biswas

C Programming 13

/ ‘Array and Pointer' \

The expression a+e is the address of the

location ale] i.e. &ale] = (a+e), and *(a+e)
1S same as ale].
Address Pointer

a = at0 = &al[0] xa = a[0]

atl = &al[1] x(a+1) = a[1]

a+2 = &al[2’ x(a+2) = al[2]

. y

Lect 16 Goutam Biswas

C Programming 14

4 N

‘Array and Pointerl

The " location of a 1-D array a[] of type int
starts from the address
(unsigned)a + 1*sizeof (int)®.

The (unsigned)a makes the address an unsigned integer. We shall not use

it explicitly to make the expression look clean.

_ /

Lect 16 Goutam Biswas

C Programming 15

4 N
‘Array and Pointer'

Location | Starting Address
0th a
157 a + sizeof(int)
ond a + 2xsizeof(int)
gth a + 1xsizeof (int)

_ /

Lect 16 Goutam Biswas

C Programming

/

‘ Pointer Arithmetic '

As the value of sizeof() depends on data type,
the meaning of a + i also changes depending
on the type of al].

_

/

16

Lect 16 Goutam Biswas

C Programming 17

/ ‘ Pointer Arithmetic I \

#include <stdio.h>

int main(){ // ptrArithl.c
char c[5], *cP;
int 1i[5], *iP;
double d[5], *dP ;

printf ("c: %p,\t\ti: %p,\t\td: %p\n", c, i, d) ;
printf ("c+1: Y%p,\ti+l: %p,\td+1l: Yp\n", c+1, i+1, d
\\\ printf ("c+2: Yp,\ti+2: %p,\td+2: %p\n", c+2;/}+2, d

Lect 16 Goutam Biswas

C Programming

/

-

printf("c+10: %p,\ti+10: %p,\td+10:

cP =c¢, 1P = 1, dP = d;

printf ("\ncP: %p,\t\tiP: %p,\t\tdP: %p\n", cP|
printf ("cP+1: %p,\tiP+1: %p,\tdP+1: %p\n", cP+
printf ("cP+2: %p,\tiP+2: %p,\tdP+2: Yp\n", cP+

printf ("cP+10: %p,\tiP+10: %p,\tdP+10: %p\n",
cP = (char *)0, iP = (int *)0, dP = (double *)

printf ("\ncP: %p,\tiP: %p,\tdP: %p\n", cP,

printf ("cP+10: %p,\tiP+10: %p,\tdP+10: %p\n",

/

Lect 16

iP |
printf ("cP+1: Yp,\tiP+1: %p,\tdP+1: %p\n", cP+
printf ("cP+2: %p,\tiP+2: %p,\tdP+2: Yp\n", cP+

18

%p\n“,zlﬁo, i+

iP,
1, 1P
2, 1P
cP+10

1, 1P
2, 1P
cP+10

Goutam Biswas

C Programming 19

4 N

return O;

_ /

Lect 16 Goutam Biswas

C Programming

20

/

‘Array and Pointer'

We can write,
(x(ate)) = &ale] = a+e, and
x(&ale]) = *(at+te) = ale].

The *x and & operators are inverse to each
other.

_

/

Lect 16

Goutam Biswas

C Programming 21

4 N
‘ Pointer Arithmetic I

The address of an element of a 1-D array can

be assigned to a pointer variable of appropriate
type and the array elements can be accessed

using the pointer variable. This in general is

[not a good programming practice}

_ /

Lect 16 Goutam Biswas

C Programming

22

/

_

Int a[10], *IP ;
IP=a+2;

IP

a 9]

a8

a 7]

a 6]

a 9]

a 4]

a 3]

|

a 1]

a0]

OFRELZ Wb oo~ O

/

Lect 16

Goutam Biswas

C Programming

23

/

{

‘ Pointer Arithmetic '

#include <stdio.h>
int main() // ptrArith2.c

int al10] = {0, 10, 20, 30, 40, 50,
60, 70, 80, 90}, *iP ;

1P = a + 2;

printf ("al[2]: %d\t*xiP: J%d\t\tiP[0]: %d\n", alg4], *i
printf ("a[5]: %d\tx(iP+3): %d\tiP[3]: Jd\n", 4[5],

return O;

/

Lect 16

Goutam Biswas

C Programming 24

4 Example I h

Write a C program that

1. reads a positive integer n (n < MAXSIZE);

2. reads n integers in an array of type int starting from
the index 0;

3. prints the data present in the array from the index 0;

4. reverses the data positions in the array
datali] < datal[n-1-i],

5. again prints the data present in the array from the

\ index 0. /

Lect 16 Goutam Biswas

C Programming 25

4 N

‘ C Program I

_ /

Lect 16 Goutam Biswas

C Programming

/<;include <stdio.h>

_

#define MAXSIZE 100
int main()

{ // revArray.c

int noOfData, data[MAXSIZE], i, halfNo ;

printf ("Enter the No. of Data (<= J%d): ",
MAXSIZE) ;
scanf ("%d", &noOfData) ;
printf ("\nEnter the Data\n") ;
for(i = 0; i < noOfData; ++i)
scanf ("%d", &datalil) ; // data+i

printf ("%d data present are\n", noOfData) ;1//

Lect 16

26

Goutam Biswas

C Programming

/

-

for(i = 0; i < noOfData; ++i)

printf("%d ", datalil) ; // *(data+i)
halfNo = (noOfData - 1)/2 ;
for(i = 0; i <= halfNo; ++i) {

int temp ;

temp = datali] ;
datali] = datal[noOfData-1-i] ;
data[noOfData-1-i] = temp ;
by
printf ("\nData After Reversal\n") ;
for(i = 0; i < noOfData; ++i)
printf("%d ", datalil]) ;

~

/

Lect 16

27

Goutam Biswas

C Programming

28

/

_

printf ("\n") ;

return O ;

/

Lect 16

Goutam Biswas

C Programming 29

4 N

Another C Program'

_ /

Lect 16 Goutam Biswas

C Programming 30

/<;include <stdio.h> ‘\\

#define MAXSIZE 100
int main() // revArray2.c

{

int noOfData, data[MAXSIZE], i, j ;

printf ("Enter the No. of Data (<= J%d): ",
MAXSIZE) ;
scanf ("%d", &noOfData) ;
printf ("\nEnter the Data\n") ;
for(i = 0; i < noOfData; ++i)
scanf ("%d", &datalil) ; // data+i

\\\ printf ("%d data present are\n", noOfData) ;1//

Lect 16 Goutam Biswas

C Programming 31

4 N

for(i = 0; i < noOfData; ++i)
printf("%d ", datalil) ; // *(data+i)
for(i = 0, j=noOfData-1; i < j; ++i, —-j) {

int temp ;

temp = datali] ;
datali] = datalj] ;
datalj]l = temp ;
+
printf ("\nData After Reversal\n") ;
for(i = 0; i < noOfData; ++i)
printf("%d ", datalil) ;

\\\ printf ("\n") ; 1//

Lect 16 Goutam Biswas

C Programming

32

/

_

return O

)

/

Lect 16

Goutam Biswas

C Programming 33

4 N

‘ Example I

Solve the previous problem by writing a
function to reverse the data in the array.

_ /

Lect 16 Goutam Biswas

C Programming 34

-~

_

e void reverseData(int [], int) ;

e The first parameter is the starting address of

e This function does not return any value, so

~

‘ Function Interface '

the array. This is equivalent to writing
int *. The second parameter is the number

of data present in the array:.

the return type is void.

/

Lect 16

Goutam Biswas

C Programming 35

4 N

Command Abstraction I

The purpose of this function is to change the
content of different locations of the array. The
job is similar to that of a sequence of statements

or commands and not like an expression (does
not compute and return a value).

_ /

Lect 16 Goutam Biswas

C Programming 36

4 N

Command Abstraction I

This type of object is called a procedure or a
subprogram in programming languages like
Pascal or FORTRAN. But in C it also is called
a function. Here the function is an abstraction
of a sequence of commands.

_ /

Lect 16 Goutam Biswas

C Programming 37

/ ‘Actual Parameters for an 1-D Array?' \

e It is necessary to access the array elements,

ale] within a called function.

e An array element can be accessed if its

address 1s known.

e The compiler can can generate code to
compute the address of ale] if it gets the

starting address of the array, the value of e,

and the size of each array element.

_ /

Lect 16 Goutam Biswas

C Programming 38

Address of an Array Element: ale] I

a-+ v XS

e ¢ is the starting address of the array,
e v is the value of the expression e.

e s is the size of each element of the array

_ /

Lect 16 Goutam Biswas

C Programming 39

4 N

‘ An Example I

_ /

Lect 16 Goutam Biswas

C Programming

/<;include <stdio.h> ‘\\

int main() // arrayAddr.c

{

_

int a[10] ;

printf("sizeof(int) = %u\n", sizeof(int));

printf ("Address of al[0]=%u:%u\n",
(unsigned)a, (unsigned)&al0]);

printf ("Address of all]=u:%u\n",
(unsigned)a+l*sizeof (int), (unsigned)&all

printf ("Address of a[2]=Yu:%u\n",
(unsigned)a+2*sizeof (int), (unsigned)&all

printf ("Address of al[7]=%u:%u\n",
(unsigned)a+7*sizeof (int), (unsigned)&al7

return 0 ; })//

Lect 16

40

1);

1);

1);

Goutam Biswas

C Programming 41

4 N

‘AﬁRun'

$./a.out

sizeof(int) = 4

Address of al[0]=3220264176:3220264176
Address of al[1]=3220264180:3220264180
Address of al[2]=3220264184:3220264180
gddress of a[7]1=3220264204:3220264204

_ /

Lect 16 Goutam Biswas

C Programming 42

Address of an Array Element: ale] I

e The value of e is computed (compiler

generates coed for that).

e The size of an array element depends on its
type, the programming language, compiler
and the machine. But all these information

are known a priori.

_ /

Lect 16 Goutam Biswas

C Programming 43

Address of an Array Element: ale] I

In case of an 1-D array, the only unknown

within a called function (callee) is the starting
address of the array which has been declared in

the caller or even at a higher level.

So the only actual parameter passed in this
case is the starting address of the array.

_ /

Lect 16 Goutam Biswas

C Programming 44

4 N

‘Formal Parameter int x[] or int *XI

The formal parameter x receives the address of
an int location. It is usually treated as the
starting address of an 1-D array. But it is
essentially a pointer of type int.

_ /

Lect 16 Goutam Biswas

C Programming 45

4 N

‘Formal Parameter int x[] or int *XI

The language does not stop a programmer to
pass any address as the actual parameter, but
the result may be memory access violation
(segmentation fault) or incorrect value.

_ /

Lect 16 Goutam Biswas

C Programming

/

_

‘Passing an 1-D Array' \

#define MAXSIZE 100
void reverseData(int [], int); // Interface
int main()

{
int data[MAXSIZE], noOfData ;
..... reverseData(data, noOfData)
+
void reverseData(int x[], int dataCount) {
oxle] oo
+

/

Lect 16

46

Goutam Biswas

C Programming 47

4 N

Z[[g g noOfData dataCount
a7 7 J > | J
a6 6 | .
a5 5 Int x[] or Int*x
o4 |4 —]
a3 3
2|2 A
a1l 1
A0

" data, Callee

“~--- Caller main() reverseData()

_

Lect 16 Goutam Biswas

C Programming 48

4 N

‘ C Program I

_ /

Lect 16 Goutam Biswas

C Programming

/<;include <stdio.h> ‘\\

#define MAXSIZE 100
void reverseData(int [], int);

{

_

int main() // revArrayl.c

int noOfData, data[MAXSIZE], i ;

printf ("Enter the No. of Data (<= %d): ",
MAXSIZE) ;

scanf ("%d", &noOfData) ;

printf ("\nEnter the Data\n") ;

for(i=0; i<noOfData; ++i) scanf("/d", &datali]

printf ("%d data present are\n", noOfData) ;

for(i=0; i<noOfData; ++i) printf("%d ", datali

reverseData(data, noOfData) ;)//

Lect 16

49

1);

Goutam Biswas

C Programming 50

//, printf ("\nData After Reversal\n") ; ﬁ\\
for(i = 0; i < noOfData; ++i)
printf("%d ", datali]) ;

printf("\n") ;
return O;

t

void reverseData(int x[], int dataCount) {

int halfNo, 1 ;

halfNo = (dataCount - 1)/2 ;
for(i = 0; i <= halfNo; ++i) {
int temp ;

\\\ temp = x[i] ;)//

Lect 16 Goutam Biswas

C Programming 51

4 N

x[i] = x[dataCount-1-i] ;
x [dataCount-1-i] = temp ;

- /

Lect 16 Goutam Biswas

C Programming 52

4 N

‘Array and Pointer'

What will happen if the function
reverseData() is called as
reverseData(a+2, noOfData-2) ?

_ /

Lect 16 Goutam Biswas

C Programming 53

/ ‘ Array Initialization I \

/ *

* arraylnitl.c

*/
#include <stdio.h>
#define MAXSIZE 5
int main()

{

int a[MAXSIZE], b[MAXSIZE] = {0, 1, 2, 3, 4%},
c [MAXSIZE] = {10}, 1 ;
float x[MAXSIZE], z[MAXSIZE] = {10.0},
y [MAXSIZE] = {0, 10.1, 20, 30, 40};

\\\ for(i = 0; i < MAXSIZE; ++i))//

Lect 16 Goutam Biswas

C Programming

54

/

-

printf ("a[%d]=%d, \t\tb[%d]l=Vd, \tc [hd]l=/d\n",
i,ali],i,b[i],i,c[i]) ;

printf("\n") ;
for(i = 0; i < MAXSIZE; ++i)

printf ("x [%d]=%Ef,\t\ty [hd]l=Vf,\tz[/hd]=)f\n",
i, x[i], i, y[il, i, z[il) |

return 0 ;

~

/

Lect 16

Goutam Biswas

C Programming 55

/ Size is Implicit' \

#include <stdio.h>
int main() // arraylnit2.c

{

int c[] = {100, 200}, b[]={10, 20} ;

int 1;

for(i = 0; 1 < 5; ++1)
printf ("b[%kd] = %d,\tcl[hd] = %d\n",
i, blil], i, clil) ;
printf ("\n") ;
return O;
\J /

Lect 16 Goutam Biswas

C Programming

56

/

€T O T T T &H

OO

‘ Interesting Output I

./a.out

| 10, c[0]
20,c[1]
100,c[2]
200, c[3]
4.cl4] =

0

100

200
2
134513340

/

Lect 16

Goutam Biswas

C Programming 57

‘ Memory Allocation I

i c(0] b[O]

O | 200 100| 20 | 10
cl1] b[1]

Lect 16 Goutam Biswas

C Programming 58

4 N
‘ Space Allocation I

e T'wo locations of type int are allocated and
initialized to 10, 20 for b[J.

e T'wo more locations are allocated and
initialized for c[] with 100, 200.

e One location is allocated for 1.

_ /

Lect 16 Goutam Biswas

C Programming 59

4 N

‘ Space Allocation I

e The compiler does not prohibit access to
b[2], b[3] or c[2], c[3].

e b[4] and 2[2] overlaps with i!

_ /

Lect 16 Goutam Biswas

C Programming 60

/ C Compiler Does Not Check for the Array Limit' \

e Beyond the limit you get meaningless data.

e There may be memory protection violation.

b[368] = 809330281,c[368] = 778121006
b[369] = 892549937,c[369] = 7632239

b [370. 1029636154,c[370] = 0
Segmentation fault (core dumped)

N /

Lect 16 Goutam Biswas

