
C Programming 1✬

✫

✩

✪

Inductive Definition to Recursive Function
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C Programming 2✬

✫

✩

✪

Factorial Function

Consider the following recursive definition of

the factorial function.

n! =







1, if n = 0,

n× (n− 1)!, if n > 0.

The function is used to define itself. The
definition is an equation with a computational
counterpart.
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C Programming 3✬

✫

✩

✪

The Equation

The factorial function satisfies the functional

equationa.

F (n) =







1, if n = 0,

n× F (n− 1), if n > 0.

aThe factorial is the fixed-point of this equation
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C Programming 4✬

✫

✩

✪

Computation of 4!

4! = 4× 3!

= 4× (3× 2!)

= 4× (3× (2× 1!))

= 4× (3× (2× (1× 0!)))

= 4× (3× (2× (1× 1)))

= 4× (3× (2× 1))

= 4× (3× 2)

= 4× 6 = 24
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C Programming 5✬

✫

✩

✪

Note

• There is no value computation in the first

four steps. The function is being unfolded.

• The value computation starts only after the

basis of the definition is reached.

• Last four steps computes the values.
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C Programming 6✬

✫

✩

✪

✞

✝

☎

✆
A function in C Language may call itself

A function that calls itself directly or indirectly
is called a recursive function. Unfolding and
delayed computation can be simulated by such
a function.
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C Programming 7✬

✫

✩

✪

Recursive Call

If a function calls itself, the obvious question is

about the termination of the process.

A()
call A

→ A()
call A

→ A()
call A

→ A() · · ·
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C Programming 8✬

✫

✩

✪

Recursive Call

The call cannot be unconditional. The basis of
an inductive (recursive) definition provides the
condition for termination. The function calls
itself to reach the termination condition, the
basis.
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C Programming 9✬

✫

✩

✪

Useless for Computation

The factorial function also satisfies the

following equation,

F (n) =







1, if n = 0,

F (n+ 1)
n+ 1 , if n > 0.

but cannot be used for computation as a call
sequence does not reach the basis.
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C Programming 10✬

✫

✩

✪

Recursive factorial Function

int factorial(int n)

{

if (n == 0) return 1 ;

else return n*factorial(n - 1) ;

} // factorialFR1.c

The function takes an actual parameter p (a
non-negative integer) and returns the value of
p!.
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C Programming 11✬

✫

✩

✪

Different Calls and Incarnations of n

✞

✝

☎

✆Actual Parameter is 4
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C Programming 12✬

✫

✩

✪
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C Programming 13✬

✫

✩

✪

Same Code but Different Data

• Same code is used for every recursive call.

• But data changes in every recursive call.
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C Programming 14✬

✫

✩

✪
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C Programming 15✬

✫

✩

✪

Note

• The first phase does not compute the value

but unfolds the recursion upto the base case.

• The value computation starts from the base

case.
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C Programming 16✬

✫

✩

✪

Note

• For every call there is new incarnation of all

the formal parameters and the local variables

(that are not static). The variable names get

bind to different memory locations.

• Variables of one invocation are not visible

from another invocation.
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C Programming 17✬

✫

✩

✪

Note

• Once a return statement is executed, all the

variables of the corresponding invocation die.

• The last incarnation of a variable name dies

first - last in first out (LIFO). The last call is

returned first.
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C Programming 18✬

✫

✩

✪

Stack Frame or Activation Record

main() x
stack frame

n
return addressfactorial(4)

stack frame

Stack Region

4

main() x
stack frame

n
return addressfactorial(4)

Stack Region

4

return address
3factorial(3) n
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C Programming 19✬

✫

✩

✪

main() x

n
return addressfactorial(4)

Stack Region
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C Programming 20✬

✫

✩

✪

main() x

n
return addressfactorial(4)

Stack Region

4

return address
3 n

stack frame
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return address
n

n

factorial(3)
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n
return addressfactorial(4)

Stack Region
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Return 1
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C Programming 21✬

✫

✩

✪

main() x

nfactorial(4)

Stack Region

4

stack frame
main() x

Stack Region

stack frame

return addr
Return 24
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C Programming 22✬

✫

✩

✪

Note

• The recursive factorial function uses more

memory than its non-recursive counter part.

• The non-recursive function uses fixed

amount of memory for an int data, whereas

the memory usage by the recursive function

is proportional to the value of data.

• Moreover a function call and return takes

some amount of extra time.
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C Programming 23✬

✫

✩

✪

Recursive Function with Iterative Dynamics

We have seen that the value computation in our
factorial function starts after unfolding the
recursion. But this dynamics of computation in
a recursive function can be made different. The
function may start the computation from the
beginning.
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C Programming 24✬

✫

✩

✪

int factIter(int n, int acc)

{

if (n == 0) return acc ;

else return factIter(n-1, n*acc) ;

} // factorialFR2.c

This function is called as factIter(n, 1) to
calculate the value of n!. The second parameter
is the value of the basis.
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C Programming 25✬

✫

✩

✪

Computation of factIter(4,1)
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n
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n

n
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C Programming 26✬

✫

✩

✪
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C Programming 27✬

✫

✩

✪

Note

The computation of n! in this recursive function

is very similar to the computation in a for-loop.

int factIter(int n) {

int acc = 1, i ;

for(i = n; i > 0 ; --i) acc *= i ;

return acc ;

}
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C Programming 28✬

✫

✩

✪

Inductive Definition: gcd(m,n)

gcd(m,n) =







n if m = 0,

gcd(n mod m,m) if m > 0.
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C Programming 29✬

✫

✩

✪

Recursive Function gcd(m,n)

int gcd(int s, int l){

if(s == 0) return l;

return gcd(l%s, s);

} // gcdFR.c
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C Programming 30✬

✫

✩

✪

Different Calls to gcd()

gcd(0, 0) ⇒ return 0

gcd(0, 5) ⇒ return 5

gcd(5, 0) ⇒ gcd(0, 5)

⇒ return 5

gcd(18, 12) ⇒ gcd(12, 18)

⇒ gcd(6, 12)

⇒ gcd(0, 6)

⇒ return 6
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