C Programming 1

4 N

Inductive Definition to Recursive Function'

\_ J

Lect 13 Goutam Biswas




C Programming 2

4 N
‘ Factorial Function I

Consider the following recursive definition of

the factorial function.

1, it n =20,
n! =
nx (n—1), if n>0.

The function is used to define itself. The
definition is an equation with a computational
counterpart.

\_ /

Lect 13 Goutam Biswas




C Programming 3

4 N
The Equation I

The factorial function satisfies the functional

equation®.

1, it n =0,

F(n) =
nxFmn-1), ifn>0.

a@The factorial is the fixed-point of this equation

\_ /

Lect 13 Goutam Biswas




C Programming 4

/ ‘ Computation of I \

4 = 4 x 3!

= 4><(3><2!)
(2 x 1))
(2 x (1 x01)))

(2> (1x1)))
(2% 1))

X (3 %

X (3 %

X (3 %

X (3 %
= 4 x(3x2)
= 4xX6 = 24

\_ /

Lect 13 Goutam Biswas




C Programming 5

~ R

e There is no value computation in the first

four steps. The function is being unfolded.

e The value computation starts only after the

basis of the definition is reached.

e Last four steps computes the values.

\_ /

Lect 13 Goutam Biswas




C Programming 6

4 N

[A function in C Language may call itself]

A function that calls itself directly or indirectly
is called a recursive function. Unfolding and
delayed computation can be simulated by such
a function.

\_ /

Lect 13 Goutam Biswas




C Programming 7

4 h

Recursive Call I

If a function calls itself, the obvious question is

about the termination of the process.

A0 A A0)

call A call A
— —

AQ) -

\_ /

Lect 13 Goutam Biswas




C Programming 8

4 N

Recursive Call I

The call cannot be unconditional. The basis of
an inductive (recursive) definition provides the
condition for termination. The function calls
itself to reach the termination condition, the
basis.

\_ /

Lect 13 Goutam Biswas




C Programming 9

‘Useless for Computation'

The factorial function also satisfies the

following equation,

1, it n =20,
F(n+1)
n—+1 -

but cannot be used for computation as a call
sequence does not reach the basis.

\_ /

Lect 13 Goutam Biswas

F(n) =
it n > 0.




C Programming 10

Recursive factorial Function'

int factorial(int n)

{

if (n == 0) return 1 ;
else return n*xfactorial(n - 1) ;

} // factorialFR1l.c

The function takes an actual parameter p (a
non-negative integer) and returns the value of

pl.

\_ /

Lect 13 Goutam Biswas




C Programming 11

4 N

‘Different Calls and Incarnations of n'

(Actual Parameter is 4)

\_ /

Lect 13 Goutam Biswas




C Programming 12

4 N

Return24

3rdCall: | n 1= 0
4th Call =0
(1-D ~Returny
5th Call v N

Returnl

_0 ]
@ Returnl

\_ /

Lect 13 Goutam Biswas




C Programming 13

4 N

‘Same Code but Different Data.

e Same code is used for every recursive call.

e But data changes in every recursive call.

\_ /

Lect 13 Goutam Biswas




C Programming

14

-~

\_

Code for factorial gomputation

main() |_4
stack framel
factorial()_4
factorial()}—>
factorial ()| —2
factorial()l—2
factorial(]—C

stack framg

High address
P

rre]turn address
rgturn address
rgturn address
rgturn address
rgturn addresq

\—4

Low address

Text/Code Region of Memory Stack Region of Memory

/

Lect 13

Goutam Biswas



C Programming

15

-

\_

but unfolds the recursion upto the base case.

case.

e The first phase does not compute the value

e The value computation starts from the base

/

Lect 13

Goutam Biswas



C Programming 16

- R

e For every call there is new incarnation of all

the formal parameters and the local variables
(that are not static). The variable names get

bind to different memory locations.

e Variables of one invocation are not visible

from another invocation.

\_ /

Lect 13 Goutam Biswas




C Programming 17

- R

e Once a return statement is executed, all the

variables of the corresponding invocation die.

e The last incarnation of a variable name dies
first - last in first out (LIFO). The last call is

returned first.

\_ /

Lect 13 Goutam Biswas




C Programming

18

/

\_

Stack Frame or Activation Record'

main() X main() X
stack frame stack frame
factorial(4) factorial(4) (
return addres . return address
stack frame fséctorlaI(S 3 |n

Stack Region

return address

Stack Region

~

/

Lect 13

Goutam Biswas



C Programming

19

/

\_

Stack Region

main() X main()
stack frame stack fram
factorial(4p—2— N . factorial(4
factorial(3) S rgturn addre QctoriaI(B'
factorial(2) £ rgturn addre 9ctorial(2'
factorial(1)}— rgtum addreggctorlal(l
factoral(0) 2

a-—g

a——g

===

==

[g_ty rn addres:
return addres:
rgturn address
rgturn addres:

Stack Region

/

Lect 13

Goutam Biswas



C Programming

20

/

main()
stack frame
factorial(4)—2
factorial(3) 3
factorial(2)—2
factorial(1)}—=

return addr

\_

X main() X
stack frame
n o ntapialial 4 n
return addres§ t0"12!(4) return addres:
n : p 3 n
return addres@cmnal(g/ return addres:
n - P 2 n
return addre gcfgal(z, return address
n e
- Return 1

Stack Region

Stack Region

/

Lect 13

Goutam Biswas



C Programming

21

/

\_

main() X main()
stack frame stack frame
R 4 - =
factorial(4p—— " __---Return 24
return addr

Stack Region

Stack Region

/

Lect 13

Goutam Biswas



C Programming 22

- R

e The recursive factorial function uses more

memory than its non-recursive counter part.

e The non-recursive function uses fixed
amount of memory for an int data, whereas
the memory usage by the recursive function

is proportional to the value of data.

e Moreover a function call and return takes

\ some amount of extra time. /

Lect 13 Goutam Biswas



C Programming

23

-~

Recursive Function with Iterative Dynamics'

factorial function starts after unfolding the

beginning.

\_

We have seen that the value computation in our

recursion. But this dynamics of computation in
a recursive function can be made different. The
function may start the computation from the

/

Lect 13

Goutam Biswas



C Programming 24

4 N

int factIter(int n, int acc)
{
if (n == 0) return acc ;
else return factlter(n-1, n*acc) ;

} // factorialFR2.c

This function is called as factIter(n, 1) to
calculate the value of n!. The second parameter

1s the value of the basis.

\_ /

Lect 13 Goutam Biswas




C Programming

25

/

\_

Computation of I

3rd Call :
4th Call : n acce
1 24
=0
5th Call : n  acce

0

aCCy

Return 24

Return 24

n acc
G (e
Return 2
=0
Return 24
Return 24

~

/

Lect 13

Goutam Biswas



C Programming

26

/

\_

main() 4
stack frame

"""" 4
factiter()—o
stack framsg

"""" 3
factiter()| 4
"""" 2
factlter()] 12
"""" 1
factiter()] 24

Stack Region

High address
P

n

acc
return address
n

acc
return address
n

aCC

return address
n

acc '

return address
Low address

/

Lect 13

Goutam Biswas



C Programming 27

a N

The computation of n! in this recursive function

is very similar to the computation in a for-loop.

int factIter(int n) {

int acc = 1, 1 ;

for(i = n; i >0 ; --i) acc *= i ;

return acc ;

\ /

Lect 13 Goutam Biswas




C Programming

/

\_

Inductive Definition: I

n
ged(m,n) =

it m=0,

ged(n mod m, m) if m > 0.

/

Lect 13

28

Goutam Biswas



C Programming 29

4 N

Recursive Function I

int gcd(int s, int 1){
if(s == 0) return 1;
return gcd(l/s, s);

} // gcdFR.c

\_ /

Lect 13 Goutam Biswas




C Programming

30

/

\_

Different Calls to gcd()

ged(18,12)

T . R

return 0
return 5
ged(0,5)
return 5
ged(12,18)
ged(6,12)
ged(0, 6)

return 6

/

Lect 13

Goutam Biswas



