
C Programming 1✬

✫

✩

✪

Inductive Definition to Recursive Function

Lect 13 Goutam Biswas



C Programming 2✬

✫

✩

✪

Factorial Function

Consider the following recursive definition of

the factorial function.

n! =







1, if n = 0,

n× (n− 1)!, if n > 0.

The function is used to define itself. The
definition is an equation with a computational
counterpart.

Lect 13 Goutam Biswas



C Programming 3✬

✫

✩

✪

The Equation

The factorial function satisfies the functional

equationa.

F (n) =







1, if n = 0,

n× F (n− 1), if n > 0.

aThe factorial is the fixed-point of this equation

Lect 13 Goutam Biswas



C Programming 4✬

✫

✩

✪

Computation of 4!

4! = 4× 3!

= 4× (3× 2!)

= 4× (3× (2× 1!))

= 4× (3× (2× (1× 0!)))

= 4× (3× (2× (1× 1)))

= 4× (3× (2× 1))

= 4× (3× 2)

= 4× 6 = 24

Lect 13 Goutam Biswas



C Programming 5✬

✫

✩

✪

Note

• There is no value computation in the first

four steps. The function is being unfolded.

• The value computation starts only after the

basis of the definition is reached.

• Last four steps computes the values.

Lect 13 Goutam Biswas



C Programming 6✬

✫

✩

✪

✞

✝

☎

✆
A function in C Language may call itself

A function that calls itself directly or indirectly
is called a recursive function. Unfolding and
delayed computation can be simulated by such
a function.

Lect 13 Goutam Biswas



C Programming 7✬

✫

✩

✪

Recursive Call

If a function calls itself, the obvious question is

about the termination of the process.

A()
call A

→ A()
call A

→ A()
call A

→ A() · · ·

Lect 13 Goutam Biswas



C Programming 8✬

✫

✩

✪

Recursive Call

The call cannot be unconditional. The basis of
an inductive (recursive) definition provides the
condition for termination. The function calls
itself to reach the termination condition, the
basis.

Lect 13 Goutam Biswas



C Programming 9✬

✫

✩

✪

Useless for Computation

The factorial function also satisfies the

following equation,

F (n) =







1, if n = 0,

F (n+ 1)
n+ 1 , if n > 0.

but cannot be used for computation as a call
sequence does not reach the basis.

Lect 13 Goutam Biswas



C Programming 10✬

✫

✩

✪

Recursive factorial Function

int factorial(int n)

{

if (n == 0) return 1 ;

else return n*factorial(n - 1) ;

} // factorialFR1.c

The function takes an actual parameter p (a
non-negative integer) and returns the value of
p!.

Lect 13 Goutam Biswas



C Programming 11✬

✫

✩

✪

Different Calls and Incarnations of n

✞

✝

☎

✆Actual Parameter is 4

Lect 13 Goutam Biswas



C Programming 12✬

✫

✩

✪

n

*

1

*

*

*n

n

n

n

First Call :

2nd Call :

3rd Call :

4th Call :

1 − 1

2 − 1

3 − 1

4 − 1

4

0

1

2

3

4

!= 0

!= 0

!= 0

!= 0

Return

Return

Return

Return

Return24

6

2

1

1

5th Call :

Lect 13 Goutam Biswas



C Programming 13✬

✫

✩

✪

Same Code but Different Data

• Same code is used for every recursive call.

• But data changes in every recursive call.

Lect 13 Goutam Biswas



C Programming 14✬

✫

✩

✪

main()
stack frame

p4

n
return address

4factorial()

3

2

1

0

return addressreturn address

return address

return address

return address

factorial()

factorial()

factorial()

factorial()

stack frams

n

n

n

n

High address

Low address

C
od

e 
fo

r 
fa

ct
or

ia
l c

om
pu

ta
tio

n

Stack Region of MemoryText/Code Region of Memory

Lect 13 Goutam Biswas



C Programming 15✬

✫

✩

✪

Note

• The first phase does not compute the value

but unfolds the recursion upto the base case.

• The value computation starts from the base

case.

Lect 13 Goutam Biswas



C Programming 16✬

✫

✩

✪

Note

• For every call there is new incarnation of all

the formal parameters and the local variables

(that are not static). The variable names get

bind to different memory locations.

• Variables of one invocation are not visible

from another invocation.

Lect 13 Goutam Biswas



C Programming 17✬

✫

✩

✪

Note

• Once a return statement is executed, all the

variables of the corresponding invocation die.

• The last incarnation of a variable name dies

first - last in first out (LIFO). The last call is

returned first.

Lect 13 Goutam Biswas



C Programming 18✬

✫

✩

✪

Stack Frame or Activation Record

main() x
stack frame

n
return addressfactorial(4)

stack frame

Stack Region

4

main() x
stack frame

n
return addressfactorial(4)

Stack Region

4

return address
3factorial(3) n

Lect 13 Goutam Biswas



C Programming 19✬

✫

✩

✪

main() x

n
return addressfactorial(4)

Stack Region

4

return address
3 n

stack frame

2

1

0

return address

return address

n

n

n

factorial(3)

factorial(0)

factorial(1)

factorial(2)

main() x

n
return addressfactorial(4)

Stack Region

4

return address
3 n

stack frame

2

1
return address

return address

n

n

factorial(3)

factorial(1)

factorial(2)

return addr Return 1

Lect 13 Goutam Biswas



C Programming 20✬

✫

✩

✪

main() x

n
return addressfactorial(4)

Stack Region

4

return address
3 n

stack frame

2

1
return address
n

n

factorial(3)

factorial(1)

factorial(2)

main() x

n
return addressfactorial(4)

Stack Region

4

return address
3 n

stack frame

2
return address
n

factorial(3)

factorial(2)

return addr
Return 1

Lect 13 Goutam Biswas



C Programming 21✬

✫

✩

✪

main() x

nfactorial(4)

Stack Region

4

stack frame
main() x

Stack Region

stack frame

return addr
Return 24

Lect 13 Goutam Biswas



C Programming 22✬

✫

✩

✪

Note

• The recursive factorial function uses more

memory than its non-recursive counter part.

• The non-recursive function uses fixed

amount of memory for an int data, whereas

the memory usage by the recursive function

is proportional to the value of data.

• Moreover a function call and return takes

some amount of extra time.

Lect 13 Goutam Biswas



C Programming 23✬

✫

✩

✪

Recursive Function with Iterative Dynamics

We have seen that the value computation in our
factorial function starts after unfolding the
recursion. But this dynamics of computation in
a recursive function can be made different. The
function may start the computation from the
beginning.

Lect 13 Goutam Biswas



C Programming 24✬

✫

✩

✪

int factIter(int n, int acc)

{

if (n == 0) return acc ;

else return factIter(n-1, n*acc) ;

} // factorialFR2.c

This function is called as factIter(n, 1) to
calculate the value of n!. The second parameter
is the value of the basis.

Lect 13 Goutam Biswas



C Programming 25✬

✫

✩

✪

Computation of factIter(4,1)

acc

acc

acc

acc

accn

n

n

n

n

5th Call :

4th Call :

3rd Call :

2nd Call :

First Call :

14

4*14 − 1

3*43 − 1

2*122 − 1

1 − 1 1*24

Return 24

Return 24

Return 24

Return 24

Return 24
14

43

122

241

240

!= 0

!= 0

!= 0

!= 0

Lect 13 Goutam Biswas



C Programming 26✬

✫

✩

✪

main()
stack frame

p4

n4

Stack Region

High address

Low address

return address
acc1

factIter()

factIter()

3
4

return address

n
acc

12
2 n

return address
acc

stack frams

1
24

return address

n
accfactIter()

factIter()

Lect 13 Goutam Biswas



C Programming 27✬

✫

✩

✪

Note

The computation of n! in this recursive function

is very similar to the computation in a for-loop.

int factIter(int n) {

int acc = 1, i ;

for(i = n; i > 0 ; --i) acc *= i ;

return acc ;

}

Lect 13 Goutam Biswas



C Programming 28✬

✫

✩

✪

Inductive Definition: gcd(m,n)

gcd(m,n) =







n if m = 0,

gcd(n mod m,m) if m > 0.

Lect 13 Goutam Biswas



C Programming 29✬

✫

✩

✪

Recursive Function gcd(m,n)

int gcd(int s, int l){

if(s == 0) return l;

return gcd(l%s, s);

} // gcdFR.c

Lect 13 Goutam Biswas



C Programming 30✬

✫

✩

✪

Different Calls to gcd()

gcd(0, 0) ⇒ return 0

gcd(0, 5) ⇒ return 5

gcd(5, 0) ⇒ gcd(0, 5)

⇒ return 5

gcd(18, 12) ⇒ gcd(12, 18)

⇒ gcd(6, 12)

⇒ gcd(0, 6)

⇒ return 6

Lect 13 Goutam Biswas


