Representation of int data

World Inside a Computer is Binary

Decimal Number System

• Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Radix-10 positional number system. The radix is also called the base of the number system.

$$12304 = 1 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 4 \times 10^0$$

Unsigned Binary Number System

- Basic symbols: 0, 1
- Radix-2 positional number system.

 $10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ The value is 22 in decimal.

Decimal to Binary Conversion

Decimal to Binary Conversion

$$89_D = 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$
$$= 2 \cdot (2 \cdot (2 \cdot (2 \cdot (2 \cdot (2 \cdot (1 + 0) + 1) + 1) + 0) + 0) + 1$$

Finite word Size of the CPU

• 32-bit word:

• Largest Number: $\sum_{i=0}^{31} 2^i = 4294967295$,

• Smallest Number: 0

• The range of unsigned int or unsigned is (in 32-bits) 0 to 4294967295.

• The range of unsigned short int or unsigned short is (in 16-bits) 0 to 65535.

An Example with 4-bit Word Size

$$b_3 \mid b_2 \mid b_1 \mid b_0$$

The Range of unsigned integer is:

$$0 \text{ to } 2^4 - 1 = 15$$

Lect 12

I	Bit S	Decimal		
b_3	b_2	b_1	b_0	Value
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

I	Bit S	Decimal		
b_3	b_2	b_1	b_0	Value
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Signed Decimal Number

• We use '+' and '-' symbols to indicate sign of a decimal number.

• In a binary system only two symbols {0,1} are available to encode any information. So one extra bit is required to indicate the sign of a number.

Three Popular Schemes

• Signed Magnitude,

• 1's Complement,

• 2's Complement

Signed Magnitude

Consider a 4-bit word as an example.

 $oxed{b_3} oxed{b_2} oxed{b_1} oxed{b_0}$

 b_3 is zero (0) for a positive number and it is one (1) for a negative number. Other three bits b_2 b_1 b_0 represent the magnitude of the number.

I	Bit S	Decimal		
b_3	b_2	b_1	b_0	Value
0	0	0	0	+0
0	0	0	1	+1
0	0	1	0	+2
0	0	1	1	+3
0	1	0	0	+4
0	1	0	1	+5
0	1	1	0	+6
0	1	1	1	+7

I	Bit S	Decimal		
b_3	b_2	b_1	b_0	Value
1	1	1	1	-7
1	1	1	0	-6
1	1	0	1	-5
1	1	0	0	-4
1	0	1	1	-3
1	0	1	0	-2
1	0	0	1	-1
1	0	0	0	-0

Signed magnitude

• There are two representations of zero: +0, -0,

- The range is $[-7, \cdots, +7]$ in 4-bits.
- If the word size is n-bits, the range is $[-(2^{n-1}-1), \cdots, +(2^{n-1}-1)].$

1's Complement Numeral

- Positive Numbers are same as the signed magnitude representation with the most significant bit^a zero.
- If n is a number in 1's complement form, -n is obtained by changing every bit to its complement. The result is called the 1's complement of n.

 a_{b_3} in case of 4-bits and b_{n-1} in case of n-bits.

1's Complement Numeral

• A negative number has one (1) in its most significant bit.

Decimal	I	Bit S	String	or S	I	Bit S	string	or S	Decimal
Value	b_3	b_2	b_1	b_0	b_3	b_2	b_1	b_0	Value
+7	0	1	1	1	1	0	0	0	- 7
+6	0	1	1	0	1	0	0	1	-6
+5	0	1	0	1	1	0	1	0	-5
+4	0	1	0	0	1	0	1	1	-4
+3	0	0	1	1	1	1	0	0	-3
+2	0	0	1	0	1	1	0	1	-2
+1	0	0	0	1	1	1	1	0	-1
+0	0	0	0	0	1	1	1	1	-0

1's Complement Representation

- Two representations of zero: +0, -0.
- The range is $[-7, \cdots, +7]$ in 4-bits.
- The range is $[-(2^{n-1}-1), \cdots, +(2^{n-1}-1)].$
- Positive number representation is identical to signed magnitude, but the negative number representations are different.

Signed Magnitude Verses 1's Complement

Decimal	Signed Magnitude	1's Complement
-0	1000	1111
-1	1001	1110
-2	1010	1101
-3	1011	1100
-4	1100	1011
-5	1101	1010
-6	1110	1001
- 7	1111	1000

2's Complement

- Positive Numbers are same as the signed magnitude and 1's complement representations with the most significant bitazero.
- If n is a number in 2's complement form, -n is obtained by changing every bit to its complement and finally adding one to the complemented number.

 $^{{}^{\}mathbf{a}}b_{3}$ in case of 4-bits and b_{n-1} in case of n-bits.

2's Complement Numeral

A negative number has a one (1) in the most significant position.

2's Complement Numeral

• Only one representations of zero: 0000.

- The range is $[-8, \cdots, +7]$ for 4-bits.
- For *n*-bits, the range is $i[-(2^{n-1}), \dots, +(2^{n-1}-1)].$
- Positive representation is identical to signed magnitude and 1's complement, but the negative representation is different.

int, short int

- 1. The range of data of type int (32-bits) is -2147483648 to 2147483647.
- 2. The range of short int (16-bits) is -32768 to 32767.
- 3. The range of long long int (64-bits) is -9223372036854775808 to 9223372036854775807.

Decimal	I	Bit S	tring	or S	I	Bit S	string	or S	Decimal
Value	b_3	b_2	b_1	b_0	b_3	b_2	b_1	b_0	Value
+7	0	1	1	1	1	0	0	0	-8
+6	0	1	1	0	1	0	0	1	-7
+5	0	1	0	1	1	0	1	0	-6
+4	0	1	0	0	1	0	1	1	-5
+3	0	0	1	1	1	1	0	0	-4
+2	0	0	1	0	1	1	0	1	-3
+1	0	0	0	1	1	1	1	0	-2
0	0	0	0	0	1	1	1	1	-1

Signed Magnitude, 1's and 2's Complements

Decimal	Sig. Mag.	1's Compl.	2's Compl.
-0	1000	1111	
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
_7	1111	1000	1001
-8			1000

Interpretation of Bits

Consider a 8-bit 2's complement number. If the number is positive e.g. 01101010, the value is as usual

$$2^6 + 2^5 + 2^3 + 2^1 = 64 + 32 + 8 + 2 = 106$$
 (decimal).

Interpretation of Bits

If the number is negative e.g. 11101010, its value is $-(100000\ 00000\ -1110\ 1010)$ i.e.

$$-[2^8 - (2^7 + 2^6 + 2^5 + 2^3 + 2^1)]$$

$$= -2^7 + 2^6 + 2^5 + 2^3 + 2^1$$

$$= -22(in decimal).$$

Weight of msb is —ve

Sign Bit Extension

-39

2's Complement Addition

2's Complement Addition

Overflow

There may be carry-out without overflow. There may not be overflow even if there is carry-out.

int in Your Machine

The C data type int is a 32-bit 2's complement number. Its range is -2147483648 to +2147483647. If one (1) is added to the largest positive number, the result is the smallest negative number.

0111 1111 1111 1111 1111 1111 1111	2147483647
+1	
1000 0000 0000 0000 0000 0000 0000 0000	-2147483648

10's Complement Number

The 2's complement numeral is nothing special. We can use radix-complement numerals for any radix to represent signed numbers without importing any new sign symbol. We consider radix-complement decimal or 10's complement numerals.

3-digit 10's Complement Numeral

There are one thousand patterns (000 to 999) with three decimal digits, we interpret them in the following way:

• If the most significant digit is any one of $\{0, 1, 2, 3, 4\}$, the denotation is a usual positive number e.g. 341 is same as usual decimal 341.

3-digit 10's Complement Numeral

- If the most significant digit is any one of $\{5, 6, 7, 8, 9\}$, the number is treated as a negative number (n).
- If n is a 10's complement number, -n is obtained by ordinary decimal subtraction 1000 n.

10's Complement Numeral

Consider the 3-digit 10's complement numeral 725. It is a negative number whose magnitude is 1000 - 725 = 275. The range of numbers represented in 3 digits is $-10^3/2$ to $+10^3/2 - 1$. In n-digits the range is $-10^n/2$ to $+10^n/2 - 1$.

Addition of 10's Complement Numeral

Lect 12

Digit Extension

3-digit	4-digit	5-digit	Decimal value
234	0234	00234	234
721	9721	99721	-279