
C Programming 1✬

✫

✩

✪

Function Abstraction

Lect 11 Goutam Biswas

C Programming 2✬

✫

✩

✪

sinx

We have already seen how to compute an

approximate value of sin x from the following

series:

sin x = x−

x
3

3!
+

x
5

5!
−

x
7

7!
+

x
9

9!
· · ·

Lect 11 Goutam Biswas

C Programming 3✬

✫

✩

✪

sinx

• The computation of sin x gives a value like

an expression.

• The value of sin x depends on the parameter

x.

• If we can encapsulate the code for this

computation as a named object that can be

called (with parameters), then it can be used

in different parts in a program.

Lect 11 Goutam Biswas

C Programming 4✬

✫

✩

✪

Function Abstraction

• Encapsulated code is called a function in C

and many other programming languages.

• A function has a name, it takes zero or more

number of parameters a, it has the type of

the returned valueb and the body of the code

for computation.

aThese are called formal parameters. They are specified with their types.
bA function may have a return type void. It does not return any value. The

purpose of such a function is abstraction of a computation that causes side-effect.

Lect 11 Goutam Biswas

C Programming 5✬

✫

✩

✪

Code for sin x

xRadian = M_PI*x/180.0 ; term = xRadian ;

sineVal = term ; termNo = 1 ;

do {

double factor ;

factor = 2.0 * termNo++ ;

factor = factor * (factor + 1.0) ;

factor = - xRadian * xRadian / factor ;

sineVal = sineVal + (term = factor * term) ;

compError = 100.0*fabs(term/sineVal) ;

} while (compError >= precError) ;

Lect 11 Goutam Biswas

C Programming 6✬

✫

✩

✪

Function Interface

The interface of the function to the other part

of the program is as follows:
✞

✝

☎

✆
double mySin(double, double);

• the name is mySin,

• there are two formal parameters, both are of

type double; one for the angle in degree and

the other for the percentage error,

• the type of the return value is double.

Lect 11 Goutam Biswas

C Programming 7✬

✫

✩

✪

Function Definition mySin()

#include <math.h>

#define ABS(X) (((X) < 0.0) ? -(X) : (X))

double mySin(double x, double precError){

double xRadian, term, sineVal, compError ;

int termNo ;

xRadian = M_PI*x/180.0 ; term = xRadian ;

sineVal = term ; termNo = 1 ;

do {

double factor ;

factor = 2.0 * termNo++ ;

factor = factor * (factor + 1.0) ;

Lect 11 Goutam Biswas

C Programming 8✬

✫

✩

✪

factor = - xRadian * xRadian / factor ;

sineVal = sineVal + (term = factor * term) ;

compError = 100.0*ABS(term/sineVal) ;

} while (compError >= precError) ;

return sineVal ;

} // sin1.c

Lect 11 Goutam Biswas

C Programming 9✬

✫

✩

✪

Note

• The name of the formal parameters are x

and precError.

• The variables x, precError, xRadian, term,

sineval, termNo are local to the function

mySin(). They are not visible to the other

parts of the program.

• The variable factor is local to the

statement-block of the do-while loop and is

not visible outside it.

Lect 11 Goutam Biswas

C Programming 10✬

✫

✩

✪

Note

The body of main() no more contains the code
for sine computation. It invokes (calls) the
mySin() function with the actual parameters.
The first parameter is the angle for which we
want the approximate sine value. The second
parameter is the prescribed percentage error.
Both the actual parameters can be expressions.

Lect 11 Goutam Biswas

C Programming 11✬

✫

✩

✪

Parameter Passing

The value of the first actual parameter is copied
to the location of the formal parameter x.
Similarly the value of the second actual
parameter is copied to the formal parameter
precError. The actual computation within the
function is done on the content of x and
precError.

Lect 11 Goutam Biswas

C Programming 12✬

✫

✩

✪

Return Value

The computed value in the called function
(callee) is returned by the return statement and
is used in the caller function like any other
expression value.

Lect 11 Goutam Biswas

C Programming 13✬

✫

✩

✪

Function main()

#include <stdio.h>

double mySin(double, double) ;

int main()

{

double x, precError ;

printf("Enter the value of an angle in Degree: ") ;

scanf("%lf", &x) ;

printf("\nEnter the Percentage Error: ") ;

scanf("%lf", &precError) ;

printf("\nsin(%f) = %f\n", x, mySin(x, precError)) ;

return 0 ;

} // sin1.c

Lect 11 Goutam Biswas

C Programming 14✬

✫

✩

✪

Note

• In the second line ‘double mySin(double,

double);’ provides the function interface

(function prototype) information to the C

compiler.

• The variables x and precError are local to

main() and are not visible from other parts

of the program. They are different from the

formal parameters with the same name in

mySin().

Lect 11 Goutam Biswas

C Programming 15✬

✫

✩

✪

Note

printf("\nsin(\%f)=\%f\n",x,mySin(x,precError)) ;

• mySin(x, precError) is the invocation (call)

of mySin() with the actual parameters x and

precError.

• The value returned by mySin() is used as the

3rd parameter to printf().

Lect 11 Goutam Biswas

C Programming 16✬

✫

✩

✪

Value Parameter

Invocation:

Definition:

...... mySin(x, precError)

Value copy

{
...

}

double mySin(double x, double precError)

Actual parameters

Formal parameters

Lect 11 Goutam Biswas

C Programming 17✬

✫

✩

✪

Parameter Passing by Value

Caller

Callee

30.0 0.001

30.0 0.001

x

x

precError

precError

Lect 11 Goutam Biswas

C Programming 18✬

✫

✩

✪

Expression as an Actual Parameter

printf(...., mySin(2.0*x, precError));

The value of 2.0*x will be evaluated and

passed as the actual parameter to mySin().

Note that the value of

mySin(2.0*y, precError) is the actual

parameter to the library function printf().

Lect 11 Goutam Biswas

C Programming 19✬

✫

✩

✪

Expression as an Actual Parameter

Caller 30.0

Callee 60.0

x

2*x

actual parameter

formal parameter x

Lect 11 Goutam Biswas

C Programming 20✬

✫

✩

✪

Flow of Control

When a function is called, the continuation of
the computation (control is transfered to) is the
beginning of the called function. Once the
execution of the callee is over, the continuation
is (control is transfered back to) the instruction
next to the call in the callera.

aDifficult to show in the high level language.

Lect 11 Goutam Biswas

C Programming 21✬

✫

✩

✪

Flow of Control

main:

call mySin

mySin:

return sinVal

return 0 call

return

Lect 11 Goutam Biswas

C Programming 22✬

✫

✩

✪

Flow of Control

If there is a sequence of nested function calls

i.e. the function main() calls the function A(),

which calls B(), which in turn calls C(). The

function C() is completed first, then it is B(),

then A() and finally main().

The last invoked (called) function is completed
first - a last in first out (LIFO) order.

Lect 11 Goutam Biswas

C Programming 23✬

✫

✩

✪

LIFO Control Transfer

main:

return 0

A:

return ...

call A call B

return ...

B:

return ...

call C

C:

call 2

call 3

call 1

return 1
return 2

return 3

Lect 11 Goutam Biswas

C Programming 24✬

✫

✩

✪

Flow of Control

As it is necessary for the caller function to have
the starting address of the function to call
(callee), it is also necessary for the callee to
have the return address in the caller
(instruction after the call) where the control is
transfered on return.

Lect 11 Goutam Biswas

C Programming 25✬

✫

✩

✪

Caller Address

A function is called by its name and its address
(address of the first instruction) is often known
a priori, at the compilation or linking timea.

aThis is not true in case of dynamic linking.

Lect 11 Goutam Biswas

C Programming 26✬

✫

✩

✪

Return Address

But a function may be called from different
placess (from different functions) within a
program. So the return address from a called
function to its caller is different on different call
and can only be determined during the time of
program execution.

Lect 11 Goutam Biswas

C Programming 27✬

✫

✩

✪

Return Address

The return address is known (often) at the time
of call itself - it is the address of the instruction
next to the call instruction.

Lect 11 Goutam Biswas

C Programming 28✬

✫

✩

✪

Return Address

A CPU provides architectural support to save

the return address while processing the call

instruction. The place to save the return

address may be a CPU register and/or some

specific memory area.

In case of nested calls, these addresses are used
in LIFO order.

Lect 11 Goutam Biswas

C Programming 29✬

✫

✩

✪

Space for Local Variables

We have already mentioned that both main()

and mySin() have their local variables.

• main(): x and precError

• mySin(): x, precError, xRadian, term,

sineVal, compError, termNo and factor.

Lect 11 Goutam Biswas

C Programming 30✬

✫

✩

✪

Space for Local Variables

Local variables of one function is not visible

from another function. Local variables

(non-static) of a function get bound to memory

only when the function is invoked. Following

our previous example of the call sequence,

main()
calls
−→ A()

calls
−→ B()

calls
−→ C()

Lect 11 Goutam Biswas

C Programming 31✬

✫

✩

✪

Space for Local Variables

Local variables of function

• C() are created last and are destroyed first,

• the variables of main() are created first and

they live longest.

Here too we see the creation and the
destruction in LIFO order like the return
addresses from the called function.

Lect 11 Goutam Biswas

C Programming 32✬

✫

✩

✪

Stack Region of Memory

Often the local variables of functions and return
addresses live in a memory region maintained in
LIFO order. This region is called stacka.

aWe shall see that a stack is a data type (structure) where entry and exit of

data follow LIFO order. This memory region behaves like a stack.

Lect 11 Goutam Biswas

C Programming 33✬

✫

✩

✪

Use of Stack Region

The stack space is used for parameter passinga,
binding local variables to memory, storing
return addresses, storing the value returned by
the functionb etc. The stack space used by a
function call is known as the activation record
or stack frame of the call.

aSome systems pass parameters through the CPU registers.
bThis too can be done through CPU register.

Lect 11 Goutam Biswas

C Programming 34✬

✫

✩

✪

main() x
precErrorstack frame

factor
ternNo
compError
sineVal
termmySin()

stack frame

Stack Region

return address
xRadian

precError
x

Lect 11 Goutam Biswas

C Programming 35✬

✫

✩

✪

Stack Region for Nested Calls

If we consider the following calls,

main()
calls
−→ A()

calls
−→ B()

calls
−→ C()

the stack frames may look as follows.

Lect 11 Goutam Biswas

C Programming 36✬

✫

✩

✪

main() x
precErrorstack frame

return address
A()

stack frame

return address
stack frame

B()

return address
stack frame

C()

main() x
precErrorstack frame

return address
A()

stack frame

Stack Region

After
call B()
call C()

After
call A()

Lect 11 Goutam Biswas

C Programming 37✬

✫

✩

✪

Problem of Output Parameter

It may be necessary for a function to update

one or more memory locations other than

returning a value.

Consider the call scanf("%d", &n). If the
value is read successfully, the function returns
one (1), but it also updates the location of n.
The parameter passing by value in C language
creates some problem.

Lect 11 Goutam Biswas

C Programming 38✬

✫

✩

✪

Function inc()

We want a function inc() that returns the

value of its argument and also increments the

content of the actual parameter (a variable).

The following C code does not work due to

call-by value semantics.

int inc(int n){

return n++ ;

}

Lect 11 Goutam Biswas

C Programming 39✬

✫

✩

✪

Invocation of inc()

#include <stdio.h>

int inc(int n){ // outParam1.c

return n++ ;

}

int main() {

int m = 10, a ;

printf("a: %d\n", a = inc(m)) ;

printf("m: %d\n", m) ;

return 0 ;

}

Lect 11 Goutam Biswas

C Programming 40✬

✫

✩

✪

Invocation of inc()

$ cc -Wall outParam1.c
$./a.out
a: 10
m: 10

Lect 11 Goutam Biswas

C Programming 41✬

✫

✩

✪

Note

• The value of the actual parameter m is

copied to the formal parameter n.

• The function inc() returns the content of n

and then increments it.

• The return value is assigned to a in main(),

but the content of m is unchanged as there is

no data copy from the formal to actual

parameter.

Lect 11 Goutam Biswas

C Programming 42✬

✫

✩

✪

a m

10int main():

int inc(int n):

a = inc(m) ;

n10

return n++ ;

actual parameter

formal parameter

10

11
updated value

no change

Lect 11 Goutam Biswas

C Programming 43✬

✫

✩

✪

Modified inc()

We modify the function as follows:

int inc(int *nP){

return (*nP)++ ;

}

int main() { // outParam2.c

int m = 10, a ;

printf("a: %d\n", a = inc(&m)) ;

printf("m: %d\n", m) ;

return 0 ;

}

Lect 11 Goutam Biswas

C Programming 44✬

✫

✩

✪

Invocation of inc()

$ cc -Wall outParam2.c
$./a.out
a: 10
m: 11

Lect 11 Goutam Biswas

C Programming 45✬

✫

✩

✪

a m

10int main(): 10 no change

nP

int *

a = inc(&m) ;

formal parameter

return (*nP)++ ;

address of m
int inc(int *nP):

actual parameter:
address of m

11

Lect 11 Goutam Biswas

C Programming 46✬

✫

✩

✪

Note

• The actual parameter &m is the address of

m copied to the pointer location int *nP.

• The return value is the content of the

location pointed by nP i.e. *nP.

• Then the location *nP i.e. m is incremented.

Lect 11 Goutam Biswas

C Programming 47✬

✫

✩

✪

scanf()

This explains why in the C library function
scanf(”%d”, &n), we have to use the unary
operator ‘&’.

Lect 11 Goutam Biswas

C Programming 48✬

✫

✩

✪

Another Example

The following function is suppose to exchange

the content of two memory locations, but it

does not work.

void exchange(int m, int n){

int temp = m ;

m = n ;

n = temp ;

}

Modify to make it work.

Lect 11 Goutam Biswas

C Programming 49✬

✫

✩

✪

exchange()

void exchange(int *mP, int *nP){

int temp = *mP ;

*mP = *nP ;

*nP = temp ;

}

Lect 11 Goutam Biswas

