Data Flow Analysis and Computation of SSA
Definitions

A basic block is the longest sequence of three-address codes with the following properties.

- The control flows to the block only through the first three-address code\(^a\).
- The control flows out of the block only through the last three-address code\(^b\).

\(^a\)There is no label in the middle of the code.
\(^b\)No three-address code other than the last one can be branch or jump.
Example

1: L2: v1 = i
2: v2 = j
3: if v1>v2 goto L3
4: v1 = j
5: v2 = i
6: v1 = v1 - v2
7: j = v1
8: goto L4
9: L3: v1 = i
10: v2 = j
11: v1 = v1 - v2
12: i = v1
13: L4: v1 = i
14: v2 = j
15: if v1<>v2 goto L2
Basic Block - b_1

1: L2: $v_1 = i$
2: $v_2 = j$
3: if $v_1 > v_2$ goto L3
3a: goto (4)
Basic Block - b_2

4: \quad v1 = j
5: \quad v2 = i
6: \quad v1 = v1 - v2
7: \quad j = v1
8: \quad goto L4
Basic Block - b_3

9: L3: v1 = i
10: v2 = j
11: v1 = v1 - v2
12: i = v1
12a: goto L4
Basic Block - b_4

13: L4: v1 = i
14 v2 = j
15 if v1<>v2 goto L2
15a exit
A control-flow graph (CFG) is a directed graph $G = (V, E)$, where the nodes are the basic blocks and the edges correspond to the flow of control from one basic block to another. The edge $e_{ij} = (v_i, v_j)$ corresponds to the flow of control from the basic block v_i to the basic block v_j.
Control-Flow Graph

Entry

\[b1: \]
L2: \[v1 = i \]
\[v2 = j \]
if \(v1 > v2 \) goto L3

\[b2: \]
v1 = j
v2 = i
v1 = v1 - v2
j = v1
goto L4

\[b3: \]
L3: \[v1 = i \]
\[v2 = j \]
v1 = v1 - v2
i = v1

\[b4: \]
L4: \[v1 = i \]
\[v2 = j \]
if \(v1 <> v2 \) goto L2

Exit

Code Gen Example

Goutam Biswas
Note

- We assume that a CFG has a unique entry node and also has a unique exit node.
- In a CFG corresponding to a function/procedure may have multiple exit and entry points. A compiler can introduce unique initial and final basic blocks and edges to (from) multiple entry (exit) points.
Note

- A compiler may use 3-address code for each basic block and a CFG for a whole procedure or a program showing flow of control among the basic blocks.

- Different global optimizations require analysis of dataflow through the CFG.
Definition

- In a CFG with the unique entry block B_0, a basic block B_i dominates a basic block B_j if every path from B_0 to B_j has B_i on it.

- Dominance is a binary relation on the set of nodes (basic blocks) of a CFG. The relation B_i dominates B_j is written as $B_i \gg B_j$.

- If there is an edge from B_i to B_j in the CFG, then B_i is called a predecessor of B_j.

Code Gen Example
Definition

- For all node B_i, $B_i \gg B_i$ (reflexive).
 Similarly for all nodes B_i, B_j, B_k, if $B_i \gg B_j$ and $B_j \gg B_k$, then $B_i \gg B_k$ (transitive).

- For every node B_i, the set $\text{Dom}(B_i)$ is the collection of all dominators of B_i.

- For every node B_i, the set $\text{Pred}(B_i)$ is the collection of all predecessors of B_i.
Code Gen Example
Examples

<table>
<thead>
<tr>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
</tr>
<tr>
<td>B_1</td>
</tr>
<tr>
<td>B_2</td>
</tr>
<tr>
<td>B_3</td>
</tr>
<tr>
<td>B_8</td>
</tr>
<tr>
<td>B_9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
</tr>
<tr>
<td>B_0</td>
</tr>
<tr>
<td>B_0</td>
</tr>
<tr>
<td>B_1</td>
</tr>
<tr>
<td>B_4, B_5</td>
</tr>
<tr>
<td>B_7, B_8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
</tr>
<tr>
<td>B_0, B_1</td>
</tr>
<tr>
<td>B_0, B_2</td>
</tr>
<tr>
<td>B_0, B_1, B_3</td>
</tr>
<tr>
<td>B_0, B_2, B_8</td>
</tr>
<tr>
<td>B_0, B_9</td>
</tr>
</tbody>
</table>
The dominator set of any node B_i can be computed using the following inductive definition.

$$\text{Dom}(B_i) = \begin{cases}
\{B_0\}, & \text{if } i = 0 \\
\{B_i\} \cup \bigcap_{B_j \in \text{Pred}(B_i)} \text{Dom}(B_j), & \text{if } i > 0.
\end{cases}$$
Note

- This equation corresponds to a forward data-flow analysis. The dominator set of \(B_i \) depends on the dominator set of its predecessor nodes.

- Similarly, there are properties of nodes that can be defined using its successors. This gives rise to backward data-flow analysis.
Algorithm

1. $\text{Dom} (B_0) \leftarrow \{B_0\}$
2. for $i \leftarrow 1$ to $n - 1$
3. $\text{Dom} (B_i) \leftarrow \{B_0, \cdots, B_{n-1}\}$
4. $\text{chFlg} \leftarrow \text{true}$
5. while $\text{chFlg} = \text{true}$
6. $\text{chFlg} \leftarrow \text{false}$
7. for $i \leftarrow 1$ to $n - 1$
8. $\text{temp} \leftarrow \{B_i\} \cup \bigcap_{B_j \in \text{Pred}(B_i)} \text{Dom}(B_j)$
9. if $\text{temp} \neq \text{Dom}(B_i)$ then
10. $\text{Dom}(B_i) \leftarrow \text{temp}; \text{chFlg} \leftarrow \text{true}$
This is an example of fixed-point computation. The iteration of the while-loop terminates when the $\text{Dom}(b)$ cannot be reduced further. It is the fixed-point of a monotone function defined by the equation.
Liveness and Safety

- The algorithm terminates as in step 8 the size of \(\text{Dom}(B_i) \) may decrease or remain unchanged. This cannot continue indefinitely.

- The correctness of the algorithm comes from the correctness of the definition of \(\text{Dom}(B_i) \).

- The speed of termination depends on the ordering of the nodes in the CFG.
Live Variable Analysis

- Using a variable before initialization is a logical error.
- If a variable x is (i) assigned a value in a 3-address code i, (ii) is used as an operand in a 3-address code j, and (iii) is not redefined in a path p in the CFG from i to j, then x is live at i and all points on path p.
Liveness and Next Use

- For each 3-address code $a \leftarrow b \odot c$, we want to know the liveness and next-uses of the variables.

- It is easy to compute them within a basic block. So the present goal is to determine the liveness and next-use for 3-address codes in a basic block.
Liveness and Next Use in a Basic Block

- **Input**: a sequence of 3-address codes of a basic block B.
- **All variables within B** are initialized as live on exit from B, but next-use is unknown - (live, −)
Liveness and Next Use in a Basic Block

- The algorithm starts at the last 3-address code of B and works backward.
- It attaches liveness and next-use information to variables in each assignment statement.
- These information may be stored in the symbol-table.
1. Get liveness and next use information (from the symbol table) of x, y, z and attach it to the instruction i.

2. Update symbol-table: x: (not Live, noNextUse) as it is redefined at i.

3. Update symbol-table: y, z: (live, i) - the next use of both y and z is 3-address code i.

$i : x = y \oplus z$
Basic Block - b_3

9: L3: v1 = i
10: v2 = j
11: v1 = v1 - v2
12: i = v1
12a: goto L4
Basic Block - b_3

symTab: $i:(L, U), j:(L, U), v1:(L, U), v2:(L, U)$

12: $i = v1$ \# $i: (L, U), v1: (L, U)$

symTab: $i:(D, N), j:(L, U), v1:(L, 12), v2:(L, U)$

11: $v1 = v1 - v2$ \# $v1: (L, 12), v2: (L, U)$

symTab: $i:(D, N), j:(L, U), v1:(L, 11), v2:(L, 11)$
Basic Block - b_3

\[
\text{symTab: } i: (D, N), j: (L, U), v1: (L, 11), v2: (L, 11)
\]

10: \[v2 = j\] \# \(v2: (L, 11), j: (L, U)\)

\[
\text{symTab: } i: (D, N), j: (L, 10), v1: (L, 11), v2: (D, N)
\]

9: \(L3: v1 = i\) \# \(v1: (L, 11), i: (D, N)\)

\[
\text{symTab: } i: (L, 9), j: (L, 10), v1: (D, N), v2: (D, N)
\]
Note - \(b_3 \)

<table>
<thead>
<tr>
<th>Var</th>
<th>Beginning</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Live</td>
<td>Next Use</td>
</tr>
<tr>
<td>(i)</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td>(j)</td>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>(v_1)</td>
<td>No</td>
<td>—</td>
</tr>
<tr>
<td>(v_2)</td>
<td>No</td>
<td>—</td>
</tr>
</tbody>
</table>
Live-Variable Analysis on a CFG

- Given a variable x and a point p in a CFG, it is important to know whether x is live at p i.e. whether the value of x at p will be used at some path in the CFG starting at p.

- Computation of this information can be formulated as a dataflow equation. But in this case the information is computed opposite to the direction of the control-flow - backward dataflow.
Formulation of Data Flow Equation

- Given a basic block B, $\text{LIn}(B)$ and $\text{LOut}(B)$ are the sets of all variables that are live at the entry and exit of the block B.
- Let $\text{uFst}(B)$ be the set of variables whose values are used in B before any definition.
- Let $\text{def}(B)$ be the set of variables that are defined in B.
Formulation of Data Flow Equation

- Variables live at the exit of B is the union of the variables live at the entry of its successors blocks.
 \[\text{LOut}(B) = \bigcup_{S \in \text{succ}(B)} \text{LIn}(S). \]
- Variables live at the entry of S contains all the variables in $\text{uFst}(S)$.

Code Gen Example
Formulation of Data Flow Equation

- Variables of $\text{def}(S)$ cannot be live at the entry of S unless it is in $\text{uFst}(B)$ i.e. used before a definition. Again $\text{def}(S) \subseteq \text{LOut}(S)$.

- So $\text{LOut}(S) \setminus \text{def}(S)$ is also contained in $\text{LIn}(S)$. So we have

 \[\text{LOut}(B) = \bigcup_{S \in \text{succ}(B)} (\text{uFst}(S) \cup (\text{LOut}(S) \setminus \text{def}(S))) \]
Computation

- It is necessary to compute \(\text{def}(S)\) and \(\text{uFst}(S)\) sets of each basic block.
- This will be done by examining the 3-address codes of a basic block from the beginning.
Computation of $uFst(B)$ and $def(B)$

Following steps are performed for each basic block B with $1 \cdots k$ 3-adders codes of type assignment e.g. $x \leftarrow y \oplus z$.

1. $uFst(B), \; def(B) \leftarrow \emptyset$
2. for $i \leftarrow 1$ to k
3. \; \; if $y \not\in def(B)$, then
4. \; \; \; $uFst(B) \leftarrow uFst(B) \cup \{y\}$
5. \; \; if $z \not\in def(B)$, then
6. \; \; \; $uFst(B) \leftarrow uFst(B) \cup \{z\}$
7. \; $def(B) \leftarrow def(B) \cup \{x\}$
Computation of $uFst(B)$ and $def(B)$

- For a 3-address code like `if x < y goto L` there is no change in $def(B)$. But $uFst(B)$ will include $\{x, y\}$ unless they are already in $def(B)$.

- Other type of 3-address codes can be handled similarly.
Computation of $\text{LOut}(B)$

It is similar to the computation of $\text{Dom}(B)$.

1. $\text{LOut}(B_i)$ for $i = 0, \cdots, n - 1$ are initialized to \emptyset.

2. All $\text{LOut}(B_i)$’s are recomputed until a fixed point is reached.

3. If the CFG corresponds to a function, the formal parameters are in $\text{LIn}()$ of the entry block.
Basic Block - b_1

1: L2: $v_1 = i$
2: $v_2 = j$
3: if $v_1 > v_2$ goto L3

$\text{uFst}(b_1) = \{i, j\}$ and $\text{def}(b_1) = \{v_1, v_2\}$
Basic Block - b_2

4: $v_1 = j$

5: $v_2 = i$

6: $v_1 = v_1 - v_2$

7: $j = v_1$

8: goto L4

$uF_{st}(b_2) = \{i, j\}$ and $\text{def}(b_2) = \{v_1, v_2, j\}$
Basic Block - b_3

9: L3: $v_1 = i$

10: $v_2 = j$

11: $v_1 = v_1 - v_2$

12: $i = v_1$

$uFst(b_3) = \{i, j\}$ and $def(b_2) = \{v_1, v_2, i\}$
Basic Block - b_4

13: L4: v1 = i
14: v2 = j
15: if v1<>v2 goto L2

uFst(b_3) = \{i, j\} and def(b_2) = \{v_1, v_2\}
Control-Flow Graph
L2: \(v1 = i \)
\(v2 = j \)
if \(v1 > v2 \) goto L3

L4: \(v1 = i \)
\(v2 = j \)
if \(v1 \neq v2 \) goto L2

L3: \(v1 = i \)
\(v2 = j \)
\(v1 = v1 - v2 \)
\(i = v1 \)

L4: \(v1 = i \)
\(v2 = j \)
if \(v1 \neq v2 \) goto L2

b1: Entry

b2: \(v1 = j \)
\(v2 = i \)
\(v1 = v1 - v2 \)
\(j = v1 \)
goto L4

b3: L3

b4: L4
Computation of $LOut(b_i)$

<table>
<thead>
<tr>
<th>b_i</th>
<th>Iteration & $LOut(b_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_i</td>
<td>0</td>
</tr>
<tr>
<td>b_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>b_2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>b_3</td>
<td>\emptyset</td>
</tr>
<tr>
<td>b_4</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Note

- The variables \(i, j \) are live at the exit of all four blocks. They may be kept in a register.

- We can detect uninitialized variable through this analysis. If the set of live-variables at the exit of the dummy entry node of a CFG is non-empty, then all variables of the set are uninitialized.
Control-Flow Graph

Ent.

\[
\begin{align*}
u\text{FST} &= \{\} \\
def &= \{\}
\end{align*}
\]

b1

\[
\begin{align*}
&j = 5 \\
u\text{FST} &= \{\} \\
def &= \{j\}
\end{align*}
\]

b2

\[
\begin{align*}
&j = j + i \\
u\text{FST} &= \{i,j\} \\
def &= \{j\}
\end{align*}
\]

Ext.

\[
\begin{align*}
&u\text{FST} = \{} \\
def &= \{}\n\end{align*}
\]
Computation of $\text{LOut}(b_i)$

<table>
<thead>
<tr>
<th>b_i</th>
<th>Iteration & $\text{LOut}(b_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ent.</td>
<td>\emptyset</td>
</tr>
<tr>
<td>b_1</td>
<td>\emptyset, ${i, j}$</td>
</tr>
<tr>
<td>b_2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Ext.</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Indicates that i is uninitialized.
Static Single Assignment: SSA

- SSA is a naming method that encodes both flow of control and flow of data in a program.
- Each name is defined by an operation at a particular point in the code. So each use of a name has a unique definition.
- The flow of control is handled by using a selection function \(\phi \).
Static Single-Assignment: SSA

- SSA representation looks similar to three-address code with two main differences.
- Each name is defined only once, so it is called static single-assignment.
- If the same variable is defined on different control paths, they are renamed as distinct variables by adding subscript to the base name.
Static Single-Assignment: SSA

- When two or more flow-paths join, a \(\phi \)-function is used to select different names of the same variable on these paths.
- A \(\phi \)-function also defines a new name.
- The arguments of \(\phi \)-functions of a join-block are ordered according to some order of incoming flow-paths.
Three-Address & SSA Codes

\[
\begin{align*}
i &= 1 \\
f &= 1 \\
\text{L2: if } i > n & \text{ goto L1} \\
f &= f \times i \\
i &= i + 1 \\
goto \text{ L2}
\end{align*}
\]

\[
\begin{align*}
i0 &= 1 \\
f0 &= 1 \\
\text{if } i0 > n & \text{ goto L1} \\
i1 &= \phi(i0, i2) \\
f1 &= \phi(f0, f2) \\
f2 &= f1 \times i1 \\
i2 &= i1 + 1 \\
\text{if } i2 & \leq n \text{ goto L2} \\
i3 &= \phi(i0, i2) \\
f3 &= \phi(f0, f2)
\end{align*}
\]
Note

- The ϕ-function is inserted at the beginning of a basic block where different values of a program variable can reach along different flow-paths.

- In our example (i_0,f_0) are copied to (i_1,f_1) when the control flows from the top. Otherwise, (i_2,f_2) is copied to (i_1,f_1).
• All ϕ-functions at the beginning of a basic block are assumed to be evaluated concurrently. So the ordering does not matter. But it may complicate the implementation of ϕ-function.

• The single assignment property simplifies code optimization. As a definition is never killed, the value of a name is available on any path starting from the definition.
Note

- The ϕ-function can take any number of arguments. The number of arguments depends on the number of control-flow paths entering a join-block.

- So it may have more than 3-addresses and there should be mechanism to accommodate it in 3-address data-structure.
Note

- Some of the arguments of a ϕ-function may be undefined during its execution. In our example i_2 is undefined when the loop is entered first time.

- But it should not create trouble as ϕ-function selects the argument corresponding to current control-flow path taken to enter the join-block (where the argument is defined).
Building SSA: A Simple Method

- For every variable name x used in the code, a ϕ-function, $x \leftarrow \phi(y, \cdots, y)$ is inserted at the beginning of each basic block with more than one predecessors.

- The number of arguments of a ϕ-function is equal to the number of predecessors of the basic block.
The ordering of \(\phi \)-function inserted at the beginning of a basic block does not matter as they are executed concurrently i.e. they select the input parameters simultaneously and write them simultaneously.

But the process may insert many useless \(\phi \)-functions.
ϕ-functions

Entry

L2:
- $i = \phi(i,i)$
- $j = \phi(j,j)$
- $u = \phi(u,u)$
- $v = \phi(v,v)$
- $u = i$
- $v = j$
- If $u > v$ goto L3

L3:
- $u = i$
- $v = j$
- $u = u - v$
- $i = u$

L2:
- $u = j$
- $v = i$
- $u = u - v$
- $j = u$
- Goto L4

L4:
- $i = \phi(i,i)$
- $j = \phi(j,j)$
- $u = \phi(u,u)$
- $v = \phi(v,v)$
- $u = i$
- $v = j$
- If $u \neq v$ goto L2

Exit
After Renaming: SSA

Entry

L2: \(i_2 = \phi (i_0, i_1) \)
 \(j_2 = \phi (j_0, j_1) \)
 \(u_2 = \phi (u_0, u_1) \)
 \(v_2 = \phi (v_0, v_1) \)
 \(u_3 = i_2 \)
 \(v_3 = j_2 \)
 if \(u_3 > v_3 \) goto L3

L3: \(u_6 = i_2 \)
 \(v_5 = j_2 \)
 \(u_7 = u_6 - v_5 \)
 \(i_3 = u_7 \)

L4: \(i_1 = \phi (i_2, i_3) \)
 \(j_1 = \phi (j_3, j_2) \)
 \(u_8 = \phi (u_5, u_7) \)
 \(v_6 = \phi (v_4, v_5) \)
 \(u_1 = i_1 \)
 \(v_1 = j_1 \)
 if \(u_1 <> v_1 \) goto L2

Exit

\(b_1: \)

\(b_2: \)

\(b_3: \)

\(b_4: \)
Both in b_1 and b_3, the ϕ-functions for u and v are useless.
Reaching Definitions

• For renaming variables for SSA we need to perform a data-flow analysis called reaching definitions. Each φ-function is also a new definition.

• A definition \(d \) of a name \(v \) \((d : v \leftarrow \cdots)\) reaches a use \(i \) \((i : \cdots \leftarrow \cdots v \cdots)\) if there is a path from \(d \) to \(i \) on which \(v \) is not redefined.
Reaching Definitions

- **Reaches**\((n) \) is the set of definitions reaches the beginning of the basic block \(n \).

- **Gen**\((n) \) is the set of set of definitions generated in the basic block \(n \) but not killed within it. So they go out of \(n \).

- **Kill**\((n) \) is the set of all definitions (globally) killed in the basic block \(n \).
Gen() and Kill()

Kill(b1) = \{d3,d5,d7,d9,d11, d4, d8,d12\}
Gen(b1) = \{d1,d2\}

Kill(b2) = \{d1,d2,d3,d7,d8,d9,d11,d12\}
Gen(b2) = \{d4,d5,d6\}

Kill(b3) = \{d1,d2,d3,d4,d5,d7,d11,d12\}
Gen(b3) = \{d8,d9,d10\}

L2: \begin{align*}
v1 &= i \\
v2 &= j \\
\text{if } v1 > v2 & \text{ goto } L3
\end{align*}

L3: \begin{align*}
v1 &= i \\
v2 &= j \\
v1 &= v1 - v2 \\
i &= v1
\end{align*}

L4: \begin{align*}
v1 &= i \\
v2 &= j \\
\text{if } v1 \neq v2 & \text{ goto } L2
\end{align*}

Kill(b4) = \{d1,d2,d3,d4,d5,d7,d8,d9\}
Gen(b4) = \{d11,d12\}
The reaching definition can be formulated as a forward data-flow problem.

\[
\text{reaches}(n) = \bigcup_{m \in \text{pred}(n)} \text{gen}(m) \cup (\text{reaches}(m) \setminus \text{kill}(m))
\]

We start with \(\text{reaches}(n) = \emptyset\) for all basic block \(n\).
Building SSA: A Simple Method

- The ϕ-function ensures that only one definition reaches an use.
- Variable in each use are renamed according to the definition that reaches it.
- For each ϕ-function, names are ordered according to the control-path of their arrival.
The algorithm correctly translates a 3-address code to SSA form. But there are many redundant ϕ-functions e.g. $x_i \leftarrow \phi(x_j, x_j)$ or the name defined may not be live (redefinition of x before use).

- Redundant ϕ-functions increases algorithmic cost.
Note

- There is an algorithm based on the notion of dominator that will not generate useless ϕ-functions.
- For every block b_i it finds out the blocks that require ϕ-functions for a definition d in b_i.
• If $b_i \in \text{Dom}(b_j)$ and $d : x \leftarrow \cdots$ is a definition in b_i, then b_j does not need a ϕ-function for x unless it is redefined in some control path that reaches b_j.

• If there is a redefinition of x in some intermediate block b_k on a control path between b_i and b_j, then the redefinition forces a ϕ-function.
Forcing a ϕ-function

A definition $d : x \leftarrow \cdots$ in a block b_i forces a ϕ-function for x in a block b_j where more than one control-paths meet (join point), in the following cases.

- $b_i \in \text{Dom}(b_k)$, where b_k is a predecessor of b_j.
- $b_i = b_j$. We call the set $\text{Dom}(b_j) \setminus \{b_j\}$ as the set of strict dominators of b_j.
In our example CFG, a definition in block B_2 forces a ϕ-function in block B_9.

The collection of blocks where the block b_i can force a ϕ-function is called the dominance frontier of b_i, $DF(b_i)$. This is the

$$DF(B_2) = \{B_9\}.$$
Given a block b_j in a CFG, the block $b_i \in \text{DOM}(b_j) \setminus \{b_j\}$, closest to b_j, is called the **immediate dominator** of b_j, $\text{IDom}(b_j)$.

For every block b_i of a CFG we draw a directed-edge from $\text{IDom}(b_i) \rightarrow b_i$. This forms a tree with the **entry-node** of the CFG as the root. It is known as the **dominator tree** of the CFG.
Dominator Tree

Code Gen Example

Goutam Biswas
Note

- The **dominator tree** of a CFG has all blocks (nodes) of the CFG.
- For a node \(b_i \), \(\text{IDom}(b_j) \) is the parent of \(b_i \) in the tree.
- The **Dom**(\(b_i \)) is the collection of nodes (blocks) on the path from the root (entry node) to \(b_i \) e.g. \(\text{IDom}(B_{10}) = B_8 \), \(\text{Dom}(B_{10}) = \{B_0, B_2, B_8, B_{10}\} \).
Properties: Node in DF

If a node (block) \(b_j \) is in some DF, then

- Multiple control-paths meet at \(b_j \) i.e. \(b_j \) is a join-point.
- For each predecessor \(b_k \), the node \(b_j \in DF(b_k) \). As \(b_j \) is the first join-point after \(b_k \) and \(b_j \) is not dominated by \(b_k \).
- For each predecessor \(b_k \), the node \(b_j \in DF(b_l) \) for all \(b_l \in \text{Dom}(k) \setminus \text{Dom}(j) \).
1. For each block b_j with multiple incoming control paths (join-point) do the following.

2. For each predecessor b_k of b_j do the following.

3. Walk up the dominator tree until some $b_i \in \text{Dom}(b_j)$ is found.

4. For each node b_l in the path of b_i to b_k, except b_i, put b_j in $\text{DF}(b_l)$.

Computing Dominance Frontier
1 for $i \leftarrow 0$ to $n - 1$ do
2 $\text{DF}(b_i) \leftarrow \emptyset$
3 for $j \leftarrow 0$ to $n - 1$ do
4 \hspace{1em} if join-point(b_j) then
5 \hspace{2em} for each $b_k \in \text{pred}(b_j)$ do
6 \hspace{3em} $\text{temp} \leftarrow b_k$
7 \hspace{2em} while $\text{temp} \neq \text{IDom}(b_j)$ do
8 \hspace{3em} $\text{DF}(\text{temp}) \leftarrow \text{DF}(\text{temp}) \cup \{b_j\}$
9 \hspace{3em} $\text{temp} \leftarrow \text{IDom}(\text{temp})$
Example

- Blocks/nodes that are **join-points** (multiple control-paths meet):
 \[B_1, B_2, B_7, B_8, B_9, B_{11}, B_{12}. \]
Dominator Tree

B0

B1

B3

B6

B11

B12

B2

B4

B8

B10

B5
Dominance Frontier:

<table>
<thead>
<tr>
<th>Blocks</th>
<th>Predecessors</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>B_1</td>
<td>B_0, B_6</td>
<td>B_1, B_9, B_{11}</td>
</tr>
<tr>
<td>B_2</td>
<td>B_0, B_{10}</td>
<td>B_2, B_9, B_{11}</td>
</tr>
<tr>
<td>B_3</td>
<td>B_1</td>
<td>B_1, B_7, B_{11}</td>
</tr>
<tr>
<td>B_4</td>
<td>B_2</td>
<td>B_8</td>
</tr>
<tr>
<td>B_5</td>
<td>B_2</td>
<td>B_8</td>
</tr>
<tr>
<td>B_6</td>
<td>B_3</td>
<td>B_1, B_{11}</td>
</tr>
</tbody>
</table>
Example

- **Dominance Frontier (cont.):**

<table>
<thead>
<tr>
<th>Blocks</th>
<th>Predecessors</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_7</td>
<td>B_3, B_1</td>
<td>B_9</td>
</tr>
<tr>
<td>B_8</td>
<td>B_4, B_5</td>
<td>B_2, B_9, B_{11}</td>
</tr>
<tr>
<td>B_9</td>
<td>B_7, B_8</td>
<td>B_{12}</td>
</tr>
<tr>
<td>B_{10}</td>
<td>B_8</td>
<td>B_2, B_{11}</td>
</tr>
<tr>
<td>B_{11}</td>
<td>B_6, B_{10}</td>
<td>B_{12}</td>
</tr>
<tr>
<td>B_{12}</td>
<td>B_9, B_{11}</td>
<td></td>
</tr>
</tbody>
</table>
Example

- The node B_1 has two predecessors B_0, B_6. As $B_0 = \text{IDom}(B_1)$, the while-loop is not entered. So it does not contribute any node in the dominance frontier. For the other predecessor B_6, the loop is entered with temp $\leftarrow B_6, B_3, B_1$, so B_1 goes in to $\text{DF}(B_6)$, $\text{DF}(B_3)$, $\text{DF}(B_1)$.
Placement of ϕ-function

• In the first algorithm (simple) a ϕ-function was introduced for every variable x at the beginning of each join-block -
 \[x \leftarrow \phi(x, \cdots, x). \]

• In the first modification, for every x defined in a block b_i, we introduce a ϕ-function at the beginning of each $b_j \in DF(b_i)$.
Placement of ϕ-function

- If the life span of a variable is restricted to a block, no ϕ-function is required for it. Only the names ‘global’ to a CFG may require ϕ-functions.

- The union of $uFst(B)$, the set of variables whose values are used before any definition in block B, is the set of ‘global’ names.
Algorithm for Global Names

- Following algorithm computes global names, glovVar and
- \(\text{varBlkLst}(x) \) for the list of blocks where the variable \(x \) is defined.
Algorithm

1. globVar ← ∅
2. for all variable \(x \), varBlkLst(\(x \)) ← ∅
3. for each block \(B \)
 4. uFst(\(B \)) ← ∅
 5. for each 3-address code \(a ← b \odot c \) from beginning
 6. if \(b \notin \text{def}(B) \) then globVar ← globVar ∪ \{b\}
 7. if \(c \notin \text{def}(B) \) then globVar ← globVar ∪ \{c\}
 8. def(B) ← def(B) ∪ \{a\}
 9. varBlkLst(\(a \)) ← varBlkLst(\(a \)) ∪ \{B\}
Algorithm for Inserting ϕ-function

- For each global name $x \in \text{globVar}$ there is a list of blocks ($\text{varBlkLst}(x)$) where x is defined.
- For each $b_i \in \text{varBlkLst}(x)$ a ϕ-function for x is inserted in every block $b_j \in \text{DF}(b_i)$.
- But then every ϕ-function in some block b_j is also a definition of x and gives rise to new ϕ-functions in $b_k \in \text{DF}(b_j)$.
Algorithm

1. for each $x \in \text{globVar}$
2. \hspace{1cm} $\text{curBlkLst} \leftarrow \text{varBlkLst}(x)$
3. \hspace{1cm} for each $b_i \in \text{curBlkLst}$
4. \hspace{2cm} for each $b_j \in \text{DF}(b_i)$
5. \hspace{3cm} if b_j does not have $\phi(x, \cdots, x)$ insert one
6. \hspace{1cm} $\text{curBlkLst} \leftarrow \text{curBlkLst} \cup \{b_j\}$
It is necessary to put more ‘flesh’ in the basic blocks of the example CFG.

<table>
<thead>
<tr>
<th>Block</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_0)</td>
<td>(a \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>(b \leftarrow \cdots)</td>
</tr>
<tr>
<td>(B_1)</td>
<td>(b \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>(c \leftarrow \cdots)</td>
</tr>
<tr>
<td>(B_2)</td>
<td>(a \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>(d \leftarrow \cdots)</td>
</tr>
<tr>
<td>(B_3)</td>
<td>(d \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>((a > c) : 3, 7))</td>
</tr>
<tr>
<td>(B_4)</td>
<td>(x \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>(x \leftarrow a - 1)</td>
</tr>
<tr>
<td>(B_5)</td>
<td>(x \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>((d \leq b) : 4, 5)</td>
</tr>
<tr>
<td>(B_6)</td>
<td>(y \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>(b \leftarrow \cdots)</td>
</tr>
<tr>
<td>(B_7)</td>
<td>(y \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>((y = b) : 1, 11)</td>
</tr>
<tr>
<td>(B_8)</td>
<td>(b \leftarrow \cdots)</td>
</tr>
<tr>
<td></td>
<td>((y = b) : 9, 10)</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Block</th>
<th>Equation</th>
<th>Equation</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_9</td>
<td>$z \leftarrow b + d$</td>
<td>$a \leftarrow z + d$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c \leftarrow a + b$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{10}</td>
<td>$d \leftarrow d + 1$</td>
<td></td>
<td>$(d < y)$</td>
<td>2, 11</td>
</tr>
<tr>
<td>B_{11}</td>
<td>$a \leftarrow b + y$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b \leftarrow d + x$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Global names:** a, b, c^a, d, x, y but z is local to B_9.

• **List of blocks where a variable is defined are:**

<table>
<thead>
<tr>
<th>Var</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blk</td>
<td>B_0, B_2</td>
<td>B_0, B_1</td>
<td>B_1</td>
<td>B_2</td>
<td>B_3</td>
<td>B_6</td>
<td>B_9</td>
</tr>
<tr>
<td></td>
<td>B_7, B_9</td>
<td>B_6, B_7</td>
<td>B_9</td>
<td>B_3</td>
<td>B_4</td>
<td>B_8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B_{11}</td>
<td>B_8, B_{11}</td>
<td>B_{10}</td>
<td>B_5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] It is pointed out by Ashray Sudhir that c is not a global name.
Placements of ϕ-function

- Consider the variable a. It is defined in $B_0, B_2, B_7, B_9, B_{11}$.
- These definitions induce ϕ-functions for a in the blocks

$$\text{DF}(B_0) \cup \text{DF}(B_2) \cup \text{DF}(B_7) \cup \text{DF}(B_9) \cup \text{DF}(B_{11})$$

$$= \emptyset \cup \{B_2, B_9, B_{11}\} \cup \{B_9\} \cup \{B_{12}\} \cup \{B_{12}\}$$

$$= \{B_2, B_9, B_{11}, B_{12}\}.$$

As B_{12} is exit block, we ignore it.
Placement of ϕ-function

- As $\{B_2, B_9, B_{11}\} \subseteq \text{varBlkLst}(a)$, no new block is added in the curBlkLst.

- After introducing $a \leftarrow \phi(a, a)$ blocks are

<table>
<thead>
<tr>
<th>Block</th>
<th>Instruction</th>
<th>Block</th>
<th>Instruction</th>
<th>Block</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2</td>
<td>$a \leftarrow \phi(a, a)$</td>
<td>B_9</td>
<td>$z \leftarrow b + d$</td>
<td>B_{11}</td>
<td>$a \leftarrow b + y$</td>
</tr>
<tr>
<td></td>
<td>$a \leftarrow \cdots$</td>
<td></td>
<td>$a \leftarrow z + d$</td>
<td></td>
<td>$b \leftarrow d + x$</td>
</tr>
<tr>
<td></td>
<td>$d \leftarrow \cdots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(d \leq b): 4, 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code Gen Example
Note

- There are redundant ϕ-functions in B_9 and B_{11} as a is not live in these two blocks.
- The live-variable analysis result may be used to detect that a is not live at the beginning of B_9 and B_{11}. It can be done at step-5 of ϕ-function insertion algorithm.
Placement of \(\phi \)-function

So blocks \(B_2, B_9, B_{11} \) are

<table>
<thead>
<tr>
<th>(B_2)</th>
<th>(B_9)</th>
<th>(B_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \leftarrow \phi(a, a))</td>
<td>(z \leftarrow b + d)</td>
<td>(a \leftarrow b + y)</td>
</tr>
<tr>
<td>(a \leftarrow \cdots)</td>
<td>(a \leftarrow z + d)</td>
<td>(b \leftarrow d + x)</td>
</tr>
<tr>
<td>(d \leftarrow \cdots)</td>
<td>(c \leftarrow a + b)</td>
<td></td>
</tr>
<tr>
<td>((d \leq b) : 4, 5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Placement of ϕ-function

- Consider the variable b. It is defined in $B_0, B_1, B_6, B_7, B_8, B_{11}$.
- ϕ-functions for b are introduced in

$$DF(B_0) \cup DF(B_1) \cup DF(B_6) \cup DF(B_7) \cup DF(B_8) \cup DF(B_{11})$$

$$= \emptyset \cup \{B_1, B_9, B_{11}\} \cup \{B_1, B_{11}\} \cup \{B_9\} \cup \{B_2, B_9, B_{11}\} \cup \{B_{12}\}$$

$$= \{B_1, B_2, B_9, B_{11}, B_{12}\}.$$
Placement of ϕ-function

- The block B_2 is added in the `curBlkLst`.
- $DF(B_2) = \{B_2, B_9, B_{11}\}$ are added in the list of blocks where $b \leftarrow \phi(b, b)$ are introduced.
- Final set of blocks are $\{B_1, B_2, B_9, B_{11}\}$.
Blocks B_1, B_2, B_9, B_{11} after insertion of $b \leftarrow \phi(b, b)$ are

<table>
<thead>
<tr>
<th>Block</th>
<th>Code</th>
</tr>
</thead>
</table>
| B_1 : | $b \leftarrow \phi(b, b)$
| | $b \leftarrow \cdots$
| | $c \leftarrow \cdots$
| | $(a > c) : 3, 7$
| B_{11} : | $b \leftarrow \phi(b, b)$
| | $a \leftarrow b + y$
| | $b \leftarrow d + x$
| B_2 : | $b \leftarrow \phi(b, b)$
| | $a \leftarrow \cdots$
| | $d \leftarrow \cdots$
| | $(d \geq b) : 4, 5$
| B_9 : | $b \leftarrow \phi(b, b)$
| | $z \leftarrow b + d$
| | $a \leftarrow z + d$
| | $c \leftarrow a + b$
Placement of ϕ-function

- The variable c introduces ϕ-function in B_1, B_9, B_{11}, all are useless, but the given algorithm cannot detect that.

- The variable d introduces ϕ-function in $B_1, B_2, B_7, B_9, B_{11}$. But it is redundant in B_1, B_7 that our algorithm cannot detect.
Placement of ϕ-function

- The variable x introduces ϕ-function in $B_1, B_2, B_7, B_8, B_9, B_{11}$. Again they are redundant in B_1 and B_7.

- The variable y introduces ϕ-function in B_1, B_2, B_9, B_{11} out of which B_1, B_2 and B_9 are redundant.
Renaming of Variables

- Each **global** name is treated as a base of name in each new definition of it e.g. x.
- For each definition it is differentiated using **subscripts** e.g. x_0, x_1, \ldots.
- One algorithm for renaming traverse the **dominator tree** in pre-order. It works as follows.
Renaming of Variables

- Each variable defined by the \(\phi \)-function at the beginning of the block \((b)\) are renamed first. After that the 3-address codes of \(b \) are visited in order.

- If the 3-address code is \(x \leftarrow y \odot z \) and the current indices of \(x, y, z \) are \(i, j, k \) respectively, then after renaming it will be \(x_{i+1} \leftarrow y_j \odot z_k \) and the current indices are modified to \(i+1, j, k \).
Renaming of Variables

- After renaming the variables in the 3-address codes of the block b, appropriate arguments of the ϕ-functions in the CFG-successors of b are renamed.
- Then the renaming is recursively called on each children block of b in the dominator tree.
Renaming of Variables

- On return from the recursive of renaming on block b, the state of name indices is restored to the value that existed before entering the block.

- It is necessary to maintain a stack of indices for all global names.
Data Structure

- For each global name we use a separate stack. This requires a second pass over the block \((b)\) at the end of the recursive call to restore the status.

- This reduces the total memory requirement for the stack.

- We also may use a counter that holds the current indices of global names.
Algorithm

1. for each $x \in \text{globVar}$
2. \hspace{1em} $\text{cInd}[x] \leftarrow 0$
3. \hspace{1em} $\text{stack}[x] \leftarrow \emptyset$
4. \hspace{1em} $\text{rename}(B_0)$
sub(x)\[sub(x)\]

Returns the current subscript for the global name \(x\), pushes it in the stack of \(x\) and increments it.

\[
\begin{align*}
\text{sub}(x) \\
1 & \quad i \leftarrow cInd[x] \\
2 & \quad \text{push}(\text{stack}[x], i) \\
3 & \quad cInd \leftarrow cInd + 1 \\
4 & \quad \text{return } i
\end{align*}
\]
1. For each ϕ-function $x \leftarrow \phi(\cdots)$ of block b rewrite x by $x_{\text{sub}(x)}$.

2. For each 3-address code in order where y is an operand change it to y_i, where $i = \text{top}(\text{stack}[y])$.

3. If x is a target of a 3-address code i.e. $x \leftarrow \cdots$, it is replaced by $x_{\text{sub}(x)}$.
rename(b)

4. For each successor block of b in the CFG, initialize the appropriate parameters of ϕ-functions.

5. Recursively call rename() on the dominoator tree children of b.

6. For each definition of $x \leftarrow \cdots$ in block b, pop(stack[x]).
Example

In our example we have six global names - globVar = \{a, b, c, d, x, y\}. Initial cInd and stack[x] are

<table>
<thead>
<tr>
<th></th>
<th>cInd</th>
<th>stack[x]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>⊥</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>⊥</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>⊥</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>⊥</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>⊥</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>⊥</td>
</tr>
</tbody>
</table>
rename(B_0)

<table>
<thead>
<tr>
<th>u</th>
<th>cInd</th>
<th>stack[u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>a_0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>b_0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>\bot</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>\bot</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>\bot</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>\bot</td>
</tr>
</tbody>
</table>

Old B_0: $a \leftarrow \cdots$

New B_0: $a_0 \leftarrow \cdots$

$b \leftarrow \cdots$

$b_0 \leftarrow \cdots$

Modified
CFG Successor of B_0

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b \leftarrow \phi(b, b_0))</td>
<td>(a \leftarrow \phi(a_0, a))</td>
</tr>
<tr>
<td>(c \leftarrow \phi(c, \bot))</td>
<td>(b \leftarrow \phi(b_0, b))</td>
</tr>
<tr>
<td>(d \leftarrow \phi(d, \bot))</td>
<td>(d \leftarrow \phi(\bot, d))</td>
</tr>
<tr>
<td>(x \leftarrow \phi(x, \bot))</td>
<td>(x \leftarrow \phi(\bot, x))</td>
</tr>
<tr>
<td>(y \leftarrow \phi(y, \bot))</td>
<td>(y \leftarrow \phi(\bot, y))</td>
</tr>
<tr>
<td>(b \leftarrow \ldots)</td>
<td>(a \leftarrow \ldots)</td>
</tr>
<tr>
<td>(c \leftarrow \ldots)</td>
<td>(d \leftarrow \ldots)</td>
</tr>
<tr>
<td>((a > c) : 3, 7)</td>
<td>((d \geq b) : 4, 5)</td>
</tr>
</tbody>
</table>
rename(B_1): DT Successor of B_0

$$B_1: \quad b_1 \leftarrow \phi(b, b_0)$$

$$c_0 \leftarrow \phi(c, \bot)$$

$$d_0 \leftarrow \phi(d, \bot)$$

$$x_0 \leftarrow \phi(x, \bot)$$

$$y_0 \leftarrow \phi(y, \bot)$$

$$b_2 \leftarrow \cdots$$

$$c_1 \leftarrow \cdots$$

$$(a_0 > c_1): 3, 7$$
Modified cInd and stack[u]

<table>
<thead>
<tr>
<th>u</th>
<th>cInd</th>
<th>stack[u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>a_0</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>$b_0 b_1 b_2$</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>$c_0 c_1$</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>d_0</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>x_0</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>y_0</td>
</tr>
</tbody>
</table>
CFG Successor of B_1

<table>
<thead>
<tr>
<th>B_3</th>
<th>B_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d \leftarrow \cdots$</td>
<td>$d \leftarrow \phi(d, d_0)$</td>
</tr>
<tr>
<td>$x \leftarrow \cdots$</td>
<td>$x \leftarrow \phi(x, x_0)$</td>
</tr>
<tr>
<td></td>
<td>$a \leftarrow \cdots$</td>
</tr>
<tr>
<td></td>
<td>$b \leftarrow \cdots$</td>
</tr>
</tbody>
</table>
rename(B_3): DT Successor of B_1

\[B_3 : \quad d_1 \leftarrow \cdots \\
\quad x_1 \leftarrow \cdots \]
Modified cInd and stack\([u]\)

<table>
<thead>
<tr>
<th>(u)</th>
<th>cInd</th>
<th>stack([u])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>(a_0)</td>
</tr>
<tr>
<td>(b)</td>
<td>3</td>
<td>(b_0\ b_1\ b_2)</td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>(c_0\ c_1)</td>
</tr>
<tr>
<td>(d)</td>
<td>2</td>
<td>(d_0\ d_1)</td>
</tr>
<tr>
<td>(x)</td>
<td>2</td>
<td>(x_0\ x_1)</td>
</tr>
<tr>
<td>(y)</td>
<td>1</td>
<td>(y_0)</td>
</tr>
</tbody>
</table>
CFG Successor of B_3

<table>
<thead>
<tr>
<th>B_6</th>
<th>B_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \leftarrow \cdots$</td>
<td>$d \leftarrow \phi(d_1, d_0)$</td>
</tr>
<tr>
<td>$b \leftarrow \cdots$</td>
<td>$x \leftarrow \phi(x_1, x_0)$</td>
</tr>
<tr>
<td></td>
<td>$a \leftarrow \cdots$</td>
</tr>
<tr>
<td></td>
<td>$b \leftarrow \cdots$</td>
</tr>
</tbody>
</table>
rename(B_6): DT Successor of B_3

$B_6: \ y_1 \leftarrow \cdots$

$\ b_3 \leftarrow \cdots$
Modified cInd and stack[\(u\)]

<table>
<thead>
<tr>
<th>(u)</th>
<th>cInd</th>
<th>stack[(u)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>(a_0)</td>
</tr>
<tr>
<td>(b)</td>
<td>4</td>
<td>(b_0\ b_1\ b_2\ b_3)</td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>(c_0\ c_1)</td>
</tr>
<tr>
<td>(d)</td>
<td>2</td>
<td>(d_0\ d_1)</td>
</tr>
<tr>
<td>(x)</td>
<td>2</td>
<td>(x_0\ x_1)</td>
</tr>
<tr>
<td>(y)</td>
<td>2</td>
<td>(y_0\ y_1)</td>
</tr>
</tbody>
</table>
CFG Successor of B_6

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1 \leftarrow \phi(b_3, b_0)$</td>
<td>$a \leftarrow \phi(a_0, a)$</td>
</tr>
<tr>
<td>$c_0 \leftarrow \phi(c_1, \bot)$</td>
<td>$b \leftarrow \phi(b_3, b)$</td>
</tr>
<tr>
<td>$d_0 \leftarrow \phi(d_1, \bot)$</td>
<td>$c \leftarrow \phi(c_1, c)$</td>
</tr>
<tr>
<td>$x_0 \leftarrow \phi(x_1, \bot)$</td>
<td>$d \leftarrow \phi(d_1, d)$</td>
</tr>
<tr>
<td>$y_0 \leftarrow \phi(y_1, \bot)$</td>
<td>$x \leftarrow \phi(x_1, x)$</td>
</tr>
<tr>
<td>$b_2 \leftarrow \cdots$</td>
<td>$y \leftarrow \phi(y_1, y)$</td>
</tr>
<tr>
<td>$c_1 \leftarrow \cdots$</td>
<td>$a \leftarrow b + y$</td>
</tr>
<tr>
<td>$(a_0 > c_1) : 3, 7$</td>
<td>$b \leftarrow d + x$</td>
</tr>
</tbody>
</table>
Return from rename(B_6)

- There is no children of B_6 in the dominator tree. So the stack entries corresponding to B_6 are popped.
- Again B_6 is the only child of B_3 in the dominator tree.
- So the stack entries corresponding to B_3 are also popped.
stack\([u]\) after pop-\(B_6\)

<table>
<thead>
<tr>
<th>(u)</th>
<th>cInd</th>
<th>stack(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>(a_0)</td>
</tr>
<tr>
<td>(b)</td>
<td>4</td>
<td>(b_0\ b_1\ b_2)</td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>(c_0\ c_1)</td>
</tr>
<tr>
<td>(d)</td>
<td>2</td>
<td>(d_0\ d_1)</td>
</tr>
<tr>
<td>(x)</td>
<td>2</td>
<td>(x_0\ x_1)</td>
</tr>
<tr>
<td>(y)</td>
<td>2</td>
<td>(y_0)</td>
</tr>
</tbody>
</table>

\(b_3\) and \(y_1\) removed.
<table>
<thead>
<tr>
<th>(u)</th>
<th>cInd</th>
<th>stack[(u)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>(a_0)</td>
</tr>
<tr>
<td>(b)</td>
<td>4</td>
<td>(b_0 \ b_1 \ b_2)</td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>(c_0 \ c_1)</td>
</tr>
<tr>
<td>(d)</td>
<td>2</td>
<td>(d_0)</td>
</tr>
<tr>
<td>(x)</td>
<td>2</td>
<td>(x_0)</td>
</tr>
<tr>
<td>(y)</td>
<td>2</td>
<td>(y_0)</td>
</tr>
</tbody>
</table>

\(d_1 \) and \(x_1 \) removed.
Next step is to rename B_7. But \ldots

It is necessary to translate SSA form to 3-address code.
Removing ϕ-function

- Let in a block b there is $x_i \leftarrow \phi(x_j, x_k)$.

- The value is x_j when the control-path to b is from the block b_u; and it is x_k when the control-path to b is from the block b_v.

- $x_i \leftarrow \phi(x_j, x_k)$ in block b is replaced by inserting $x_i \leftarrow x_j$ in b_u and $x_i \leftarrow x_k$ in b_v (at the end).
Example: B_1 and Two Predecessors

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_6</th>
<th>B_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1 \leftarrow \phi(b_3, b_0)$</td>
<td>$y_1 \leftarrow \cdots$</td>
<td>$a_0 \leftarrow \cdots$</td>
</tr>
<tr>
<td>$c_0 \leftarrow \phi(c_1, \perp)$</td>
<td>$b_3 \leftarrow \cdots$</td>
<td>$b_0 \leftarrow \cdots$</td>
</tr>
<tr>
<td>$d_0 \leftarrow \phi(d_1, \perp)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_0 \leftarrow \phi(x_1, \perp)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_0 \leftarrow \phi(y_1, \perp)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_2 \leftarrow \cdots$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_1 \leftarrow \cdots$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(a_0 > c_1): 3, 7$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Replacing ϕ from B_1

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_6</th>
<th>B_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_2 \leftarrow \cdots$</td>
<td>$y_1 \leftarrow \cdots$</td>
<td>$a_0 \leftarrow \cdots$</td>
</tr>
<tr>
<td>$c_1 \leftarrow \cdots$</td>
<td>$b_3 \leftarrow \cdots$</td>
<td>$b_0 \leftarrow \cdots$</td>
</tr>
<tr>
<td>$(a_0 > c_1) : 3, 7$</td>
<td>$b_1 \leftarrow b_3$</td>
<td>$b_1 \leftarrow b_0$</td>
</tr>
<tr>
<td></td>
<td>$c_0 \leftarrow c_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d_0 \leftarrow d_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x_0 \leftarrow x_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y_0 \leftarrow y_1$</td>
<td></td>
</tr>
</tbody>
</table>
References