\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Instruction-Level Parallelism.

and

‘Its Dynamic Exploitationl

Chapter 3 - Computer Architecture : A Quantitative
Approach - Hennessy & Patterson

~

_

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

‘ Instruction-level Parallelism I

e Parallelism among instructions.

e Dynamic technique used by hardware to locate
parallelism: Pentium III & 4, MIPS R10000,
Sun UltraSPARC, Alpha

e Static technique used by compiler.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
Data Dependences I

The instruction J is data dependent on

instruction [if

e The instruction J uses the result produce by
instruction / or

@ There is an instruction K data dependent on /
and J is data dependent on K.

e Data dependence through register or through
memory.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

Dependences I

e Data dependences are properties of a program.

e Hazard and stall caused by such dependence is

characteristic of a pipelined implementation.

e A dependence determines the order of value

computation, indicates the possibility of
hazards and gives an upper bound of IPL.

_

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘ Overcoming Dependences I

e Detection of dependence - more difficult to

detect if it is through memory.

e Transform the code to eliminate the
dependence.

e Avoid the hazards by hardware - forwarding,
dynamic scheduling.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

‘ Other Dependences I

e Name dependence - anti-dependence and
output dependence.

e Control dependence - program order.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Name Dependence I

e The instruction / is anti-dependent on a

following instruction J if [reads from a
location written by J. The instruction [
should read before the instruction J writes.

e The instruction / is output dependent on the

instruction J if both of them writes the same
register or memory location. The order of
there write should be the program order.

~

_

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

‘Different Data Hazards.

e RAW - read after write in a pipeline.

e WAW - write in more than one pipe stages,

multiple functional units etc.

e WAR - out of order issue, writes early or reads

late.

_

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
Control Dependence I

e Program order is to be preserved.

e An instruction dependent on branch cannot be
moved out of the scope of the branch.

e An instruction not dependent on branch
cannot be moved within the scope of the
branch.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Control Dependence I

e Control dependence may be violated provided

the program correctness is guaranteed.

e The critical properties for program correctness

are - data flow and behavior on exception.

e Data flow to an instruction is not static due to

the presence of branch. Static data
dependence analysis is not sufficient.

~

_

10

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur 11

4 N
Data Flow'

DADD R1,R2,R3
BEQZ R1, L1
LD R4, O(R1)

L1:

The load is not data dependent on any of the
previous instructions. But it is control dependent

on the branch.
What is the problem to take it above the branch?

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/
Data Flow'

DADDU R1,R2,R3

BEQZ R4, L1

DSUBU R9,R5,R6

DSUBU R1,R3,R9
L1:

OR R7,R1,R8

The value of R1 received by OR R7,R1,R8
depends on the branch.

If it 1s known that R9 will not be used after L1
(dead), it can be shifted above the branch.

_

~

_

12

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Dynamic Scheduling I \

Instructions are rearranged by the hardware to
reduce stalls.

The data flow and exception behavior is
maintained.

Data dependences unknown at the compilation
time can be handled better (data dependence
through memory).

Code compiled for different pipeline model
may run efficiently.

More hardware complexity. J

13

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Dynamic Scheduling I

e The main problem of a pipeline is in-order
instruction issue and execution.

DIV.D FO,F2,F4
ADD.D F10,FO,F8
SUB.D F12,F3,F14

DIV.D instruction resulting a stall for SUB.D
which is not dependent.

N

~

The ADD.D instruction will be stalled due to the

_

14

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

Dynamic Scheduling I

e In the previous example if there is no

structural hazard i.e. a functional unit is
available,

an instruction can be issued if there is no data
hazard.

The issue and start of execution are separated
out.

In-order issue, but out of order start and

completion of execution.

_

15

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

Out-of-Order Execution and Exception'

Out-of-Order execution and completion may
give rise to WAW and WAR hazards.

Complication in exception behavior.

No instruction should raise exception until it
is guaranteed to be executed in program order.

The exception may be imprecise but the
program order exception behavior must be

preserved.

_

16

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Dynamic Scheduling I

e The ID stage is splitted into

— Issue: decode the instruction and check for
structural hazard - stall if there is any.

— Read Operand: wait if there is a data
hazard, then read operands and start
execution.

e The execution has a begin and an end.

~

17

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Robert Tomasulo’s Algorithm'

e Designed for IBM 360 machines.

e Register renaming is done through the

This avoids WAW and WAR hazards.

N

e Keeps track of the availability of instructions.

unnamed registers in the reservation stations.

~

18

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
‘ Register Renaming I

DIV.D FO,F2,F4
ADD.D F6,FO,F8
S.D F6, 0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8
There is a anti-dependence between ADD.D (F8)

and SUB.D (F8). There is output dependence
between ADD.D (F6) and MUL.D (F6).

N /

19

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
‘ Register Renaming I

DIV.D FO,F2,F4
ADD.D V1,FO,F8
S.D Vi, O0(R1)
SUB.D V2,F10,F14
MUL.D F6,F10,V2

Every use of F8 defined by SUB.D is substituted
by V2.

N /

20

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ ‘ Reservation Station ' \

e Buffers an instruction, operands and the

result.

e When empty, it gets an instruction from an
instruction queue.

e It fetches and buffers the operands as soon as
they are available (reduces register access).

e If the current value of the operand is not from
a register but as an output of some previous
instruction, it keeps track of the corresponding

K reservation station. J

21

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

‘ Reservation Station I

e The register specifier for pending operands are

renamed to the name of the reservation station
(virtual registers).

e There are more reservation stations (in IBM

360) than ISA registers and the algorithm can
eliminate more name dependences than a
compiler!

_

22

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘ Reservation Station '

e Hazard detection and execution control is

distributed as the information available in a
reservation station decides the start of
execution.

@ The results are passed to different functional

units through common data bus(s) (CDB).

~

23

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

From Instruction Unit
l FP Registers
| nstruction
L oad/Store Op.
FP Op.
Address Unit

" & w 0 Operand Bus
E E v J Reservation l
3 3 3 Stations Y 5
v g 2 1
S S 1
n 1 _
Data l Y Address l l j j

Memory Unit FP Adders FP Mult/Div

Common Data Bus (CDB)

Figure 1: MIPS Tomasulo’s Structure

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

MIPS Tomasulo Structure'

e The structure has floating-point units and
load-store units.

e Execution control tables are not shown.

® A reservation station holds an issued
instruction that waits for execution in a
functional unit.

e It also holds the operand values, if already
available, or the name(s) of the reservation
station(s) that will provide it.

N

~

25

\CA III: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

to memory.

Load/Store Buffer I

e Very similar to reservation stations.

~

e Holds address and data coming from and going

26

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
Bus Connections '

e There is a pair of data buses from the floating

point registers to the reservation stations and
a single bus to the store buffer.

e Data from all functional units and memory are
sent over a common data bus (CDB) to every
place other than the load buffer.

N /

27

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Three Steps of Executionl

e Instruction Issue.
e Instruction Execute.

e Write the result.

N

~

28

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

e The next instruction comes from the FIFO

~

Instruction Issue '

queue (for correct data flow).

If a reservation station (or LS buffer)
corresponding to the required functional unit
is available, the instruction is issued and
operand values are fetched (if available in
registers).

If no reservation station is available (structural
hazard), the instruction is stalled.

_

29

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Instruction Issue '

e If the operands are not in the registers, the

reservation unit keeps track of the functional
unit that will produce it.

e This step renames the registers and eliminates

the WAR and WAW hazards.

~

_

30

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘ Instruction Execute I

e If one or more operands are not available, it

monitors the CDB and place the operand in
the proper reservation station when available.

By this RAW hazard is avoided.

e More than one instruction may be ready for a
functional unit. There may be choice or
parallel execution depending on the number of
available units.

N /

31

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Execution of Load/Store I

e Load/store has two steps - effective address

computation (when the base register is
available).

The effective address, after computation, is
stored in the load/store buffer

Load in the load buffer can be executed as
soon as the memory unit is available.

Store may have to wait for the availability of
the data to be stored.

~

_

32

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

Execution of Load/Store I

e The program order of load/store is maintained

through the effective address computation.

e This will prevent hazard through memory.

33

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e No instruction following a branch in program

e This restriction guarantees that an instruction

~

‘ Exception Behavior I

order 1s executed before the branch is
complete.

causes an exception would have been actually
executed in program order.

_

34

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e If there is a branch prediction, the processor

e Exceptions may be recorded but not raised.

e It allows the instruction execution to continue

~

‘ Exception Behavior I

must know that the prediction is correct
before allowing the instruction following the
branch to execute.

before it enters the write result.

_

35

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘ Write Result I

e The result when available will be written on
the CDB and from there to registers.

e The data is also written in reservation
stations, store buffers and address
computation unit waiting for this data.

e If the memory unit is free, the address of the
location and the data to store are available,
the store can be completed.

N

~

_

36

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Data Structures '

e Data Structures used to detect and eliminate

hazards are attached to the reservation
stations, load/store units and registers files.

e Data structures are tags (4-bit in this

example) for names of the actual and virtual
registers (reservation stations).

e In this example there are five (5) reservation

stations and six (6) load buffers.

~

37

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

Seven (7) Fields of a Reservation Station'

e Op - operation to perform on source operands
S1 and S2.

e Qj and Qk - the reservation stations that will
produce the source operand. If the value is
zero (0), it indicates that the value is available
in Vj or VKk; or it may be unnecessary.

e Vj and Vk - values of the source operands.
Both V and Q fields cannot be valid.

N /

38

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Seven (7) Fields of a Reservation Station'

- stores the immediate data. Stores the
offset and finally the effective address for
load /store buffer.

- the reservation station and the
corresponding functional unit is busy.

~

39

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

Register Status I

e i - The number of the reservation station
computing the new value for this register. If it
is zero (0), no currently running instruction is
computing its value.

N /

40

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Tomasulo’s Algorithm: An Examplel

L.D F6,34(R2)
L.D F2,45(R3)
MUL.D FO,F2,F4
SUB.D F8,F2,F6
DIV.D F10,F0,F6
ADD.D F6,F8,F2

We consider the state when the first load is
complete and the second load has not yet written
the register F2.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘ Reservation Stations '

~

Name Busy Op Vj Vk Qi Qk A

L, no

Lo yes load 45 + R3
A, yes sub M[344+R2] Lo

Ao yes add A1 Lo

Aj no

M yes mul F4 L-

M, yes div M[344+R2] M;

42

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

‘Register Status (Qi)'

FO F2 F4 F6 F8 F10 F12 .-- F30
M1 L2 A2 A1 M2

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Instruction Issue: FP Operations'

e Wait until a station r 1s available.

e Action:

if (RegisterStatus[rs].Qi !'= 0)
ReservationStation[r].Q]
else {

ReservationStation[r].V]j

RegisterStatus|[rs]|.

Reglrs] ;
0 ;

ReservationStation[r].Qj

}

N /

\CA III: CS 40013 G. Biswas :

Computer Sc & Engg : IIT Kharagpur

-~

~

else {

}

RegisterStatus[rd] .Qi

N

ReservationStationl[r].Qk

ReservationStation|[r].Vk

ReservationStation[r] .Qk

ReservationStation[r] .Busy

r,

‘Instruction Issue: FP Operations'

if (RegisterStatus[rt].Qi != 0)

RegisterStatus[rt].Qi

Reglrt] ;
0 ;

yes ;

45

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Instruction Issue: Load/Store I

e Wait until a buffer r is available.

e Action:

0)

if (RegisterStatus[rs].Qi !
ReservationStation[r].Q]
else {

ReservationStation[r].V]j

Reglrs] ;
03

ReservationStation[r].Qj

}

ReservationStation[r] .A = imm;

ReservationStation[r] .Busy = yes ;

~

RegisterStatus|[rs]|.

_

46

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Instruction Issue: Load'

RegisterStatus[rt] .Qi = r ;

~

47

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

Instruction Issue: Store'

if (RegisterStatus[rt].Qi != 0)
ReservationStation[r].Qk = RegisterStatus[rt].Qi

else {
ReservationStation[r].Vk

Reglrt] ;
0 ;

ReservationStation[r].Qk

N /

48

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

Execute: Floating-point Op.'

e Wait until ReservationStation[r].Qi = 0 and

ReservationStation[r] .Qk = O.

e Action: Compute with operands from Vj and
Vk.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Execute: Load/Store Op.'

is head of load /store queue.

e Action 1: ReservationStation[r] .A =

ReservationStation[r].Vj +

ReservationStation[r] .A

e Action 2 (load only): read from

Mem[ReservationStation|[r] .A]

~

e Wait until ReservationStation[r].Qi = O and r

50

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

Write Result: Floating-point Op. or Load'

e Wait until execution complete at r and CDB is

available.

e Action:
— Vx (if (RegisterStatus([x].Qi = r) {
Regl[x] = result;
RegisterStatus[x].Qi = 0})
— Vx (if (ReservationStation[x].Qj = r) {
ReservationStation[x].Vj = result;

ReservationStation[x].Qj = 0 })

N /

51

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Write Result: Floating-point Op. or Load'

e Vx (if (ReservationStation[x].Qk = r) {
ReservationStation([x] .Vk = result;
ReservationStation[x].Qk = 0 })

® ReservationStation[r].Busy = no

N

~

52

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Write Result: Store'

e Wait until execution complete at r and

ReservationStation[r] .Qk = O.

e Action:

Mem[ReservationStation[r] .A] =
ReservationStation[r] .Vk ;

ReservationStation[r] .Busy = no

~

_

53

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Order of load/store I

e If the memory addresses are different, load

and store can be done in any order.

e But if the address is same then reordering

load-store and store-load and store-store give
rise to WAR, RAW and WAW hazards
respectively.

~

54

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ Avoidance of Load/Store Hazard' \

e To determine whether a load can be executed,

the processor should check whether there is
any incomplete store in the same location.

e To determine whether a store can be executed,
the processor should check whether there is
any incomplete load or store in the same
location.

@ To check this it is necessary to compute the
effective address of the data memory in

program order.
N _/

55

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘ Tomasulo’s Scheme I

e Renaming of architectural registers by the

reservation stations.

file.

e Broadcast of result over the CDB.

~

e Buffering of source operands from the register

56

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Dynamically Scheduled Pipeline: Performance'

e A dynamically scheduled pipeline can give

high performance provided the branches are
predicted correctly.

e The hardware complexity of Tomasulo’s
scheme is very high.

N /

57

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘Dynamically Scheduled Pipeline: Performance'

e Each reservation station must contain a high
speed associative buffer with a complex control

logic.

e There should be more than one CDB for high

performance, but every additional CDB will
add extra tag-matching hardware for each
reservation station.

~

_

58

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

N

‘Reducing Branch Costs: Hardware Prediction'

e The control dependences become very
e A processor that can issue n instructions per

e The impact of control stalls is larger for such a

important for processors with high ILP.

clock cycle, encounters branches n times faster.

low CPI machine.

_

59

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e The hardware can dynamically predict the

e The prediction mechanism should be accurate

e Branch penalty depends on the structure of

~

‘Dynamic Branch Prediction.

outcome of a branch.
and fast.

the pipeline, type of predictor and the
recovery cost from mis-prediction.

_

60

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ Branch-Prediction Buffer ' \

e A simplest Branch prediction buffer is a

branch history table indexed by the lower
portion of the address of the branch
instruction.

e The table (memory) in its simplest form may
take a single bit to indicate whether the
branch was recently taken or not. The current
branch is predicted on the basis of the bit.

e The buffer is a hash table and the entry may
correspond to another branch instruction with

K the same low order bit. J

61

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

Branch-Prediction Buffer '

e The fetching of next instructions starts

depending on the hint of the prediction buffer.

e If the prediction is wrong, the prediction bit is

inverted.

e The target address should be known along

with the prediction.

e Little impact on 5-stages MIPS pipeline.

_

62

\CA III: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

L6

.L9:

L4

‘Problem with 1-bit Prediction Scheme'

cmpl
jle

jmp

movl
sall
movl
leal
incl

jmp

$9, -8(%ebp)
.L9

L4

-12(%ebp), heax
$1, Yeax

heax, -12(%ebp)
-8 (%ebp) , heax
(heax)

.L6

~

63

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

‘Problem with 1-bit Prediction Scheme'

e If the initial prediction is not-taken (inner

loop), then there are two mis-predictions - the
initial and the final.

e The branch will be taken ten (10) out of

eleven (11) times.

e If it is an inner loop there will be large

number of mis-predictions.

64

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e A 2-bit prediction scheme uses a 2-bit

e The counter i1s incremented on a taken branch

e The prediction is changed only after two

~

2-bit Prediction Scheme'

saturation counter.
and 1s decremented on an untaken branch.

misses.

65

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Taken

Predict Taken Pred|Ct not Tak
11 01
Taken not Take l Not Taken

Predict Taken Predict not Take
10 00

not Taken

Figure 2: 2-bit Predictor

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ ‘ Prediction Buffer ' \

e Buffer may be implemented as a special cache

addressed by the least significant bits of the
instruction address.

e The prediction bits in another scheme may be
attached to the instruction cache.

e The buffer is accessed in the IF stage.

e Once the instruction is known to be a branch
and the branch address is computed, new
instructions are fetched from the target if the

prediction is taken.
_ J

67

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

Prediction in 5-stage Pipeline'

e In the classic 5-stage pipeline, both whether
the branch is taken and the value of the
branch address is known in the ID stage. The
prediction scheme is of no extra help.

N /

68

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Performance of 2-bit Branch Prediction'

e 2-bit prediction buffer of size 4K entries and
SPEC89 benchmark gives 1% to 18%
mis-predictions on different programs.

e Calculation of performance loss also depends

on branch frequency.

e Integer programs have higher branch
frequencies than floating-point scientific

computations.

N

~

69

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘Improvement of Branch Prediction Scheme'

e Increase in the size of the prediction buffer -

4K entry buffer is comparable to infinite
buffer.

e Increase in the accuracy of the scheme -

increase of the number of bits is not enough.

~

_

70

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Correlation Among Branches.

e So far we were looking at the history of a
branch to predict its next behavior.

e The prediction may be more accurate if we
look at the history of some other branches.

N

~

71

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘A Small Piece of Code'

and R2 respectively.

N

~

The variable aa and bb are assigned to registers R1

_

72

\CA III: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

L1:

N

~

‘ MIPS Translation I

DADDI R3, R1, #-2

BNEZ R3, L1 ;branch bl (aa !'= 2)
DADD R1, RO, RO
DADDI R3, R2, #-2
BNEZ R3, L2 ;branch bl (bb = 2)
DADD R2, RO, RO
DSUBU R3, R1, R2
BEQZ R3, L3 sbranch b3 (aa == bb)

The branch b3 is correlated to bl and b2. If both
are not taken, then b3 is taken.

_

73

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

‘Correlating Predictors (2-level predictor) I

e A branch predictor that uses the behavior of
other branches for prediction.

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘1-bit of Correlation'

e Each branch has two (2) separate prediction
bits bl bO.

e If the last branch was not taken, one
prediction bit is used - bl.

e If the last branch was taken, the other
prediction bit is used - b0.

e In general, the last branch is not the branch
being predicted.

N

~

75

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

branch!

N

An Example I

BNEZ R1, L1 ;b1 (d!'=0)

DADDIU R1, RO, #1 ;d = 1
L1: DADDUI R3, R1, #-1

BNEZ R3, L2 ;b2 (d!'=1)
L2:

Assume that the code is in a loop and the values
alternate between 2 and 0. As if there is no other

~

_

76

\CA III: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘1-bit Predictor (Initialized not taken)'

P-bl bl N-bl P-b2 b2 N-b2

S N O N | QA

nt T t nt T t
t NT nt t NT nt

nt T t nt T t
t NT nt t NT nt

P - predicted, N - new prediction.

All predictions are wrong.

~

77

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘1-bit Predictor + 1-bit Correlation.

P-bl1 bl N-bl P-b2 b2 N-b2
nt/nt T t/nt nt/nt T nt/t
t/nt NT t/nt nt/t NT nt/t
t/mt T t/mt nt/t T nt/t
t/mt NT t/nt nt/t NT nt/t

S N O N | QA

P - predicted, N - new prediction.

Though there are only two mis-predictions, the
branch b1l is not correlated to b2. But b2 is
correlated to bl.

N /

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

(m,n) Predictor

e The correlation predictor we have discussed is
called (1,1) predictor.

e It uses the behavior of the last branch to
choose from a pair of 1-bit branch predictors.

e An (m,n) predictor uses the behavior of last m
branches to choose from 2™ predictors, each of
which is an n-bit predictor.

N /

79

\CA III: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Instruction
Addrese 10
(3 - LSB)
nn Nt tn tt
t|n T

2—bit Global Branch History

Figure 3: (2,2) Predictor

80

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

Performance I

e Comparison of (2,2) correlation predictor with
1K entries shows that it not only out performs
the 2-bit simple predictor of size 4K, but also
out performs 2-bit predictor of unlimited size.

N /

81

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Tournament Predictor: Multilevel Prediction'

e It uses multiple predictors - one base on global

information and one based on local
information.

e They are combined with a selector.

e The selector may be a saturation counter per
branch to choose among the two predictors.

e The counter is incremented if the predictor 2
is correct and the predictor 1 is incorrect. It is
decremented in reverse situation.

N /

82

\CA III: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

i/i, ¢/, cl/c

00
cfi . I/C
Predictor |
01

¢ — Correct I i/i, ilc, clc
I — Incorrect

Predictor 11
10
3 cli li/c

Predictor 11
11

Figure 4: Selector State Transition

83

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

Alpha 21264: Tournament Predictor'

e 4K 2-bit selector counters indexed by local

branch address to choose from a global
predictor and a local predictor.

e The global predictor has 4k entries and is

indexed by the history of last 12 branches.
Each one is a 2-bit simple predictor.

~

84

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ Alpha 21264: Tournament Predictor' \

e There are two levels of the local predictor.

e The top level has 1024 10-bit entries. Each
entry corresponds to the most recent 10

branch outcomes for this entry.

@ The selected entry from the local table is used
as index to a table (1024 entries) of saturation
counters (each 3-bit). The counter is used for
local prediction.

e The total number of bits are: 2 x 4k (selector)
+ 2 x 4K (global) 4+ (10 x 1K 4+ 3 x 1K) =

K 29K. /

85

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

High Bandwidth Instruction Delivery'

e Prediction of branch is not enough for a

high-performance pipeline with multiple

instruction issue.

e The necessity is to deliver 4-8 instructions per

clock cycle.

~

_

86

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

High Bandwidth Instruction Delivery'

e Branch-target buffer.
e Integrated instruction fetch unit.

e Return address prediction.

N

~

87

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
‘ Branch-Target Buffer I

e Consider the 5-stage pipeline.

e The address of the physically-next instruction
is loaded in the PC at the end of the IF stage.

e The branch-prediction and the branch-address
are known only at the end of the ID stage.

e There is one cycle delay for a taken branch.

N /

88

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

‘ Branch-Target Buffer I

e If the branch-target buffer and the
branch-prediction buffer are accessed in the IF
stage using the address of the fetched
instruction, and it is a hit, the target address
can be loaded in the PC without delay.

N /

89

\CA III: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

PC
Address Tag Predicted PC
no
yes

Figure 5: Branch Target Buffer

~

—

Branch Predictior

90

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ ‘ Branch-Target Buffer I

e The branch-target buffer is an associative

~

memory searched by the address of the fetched
instruction.

e If there is a match and the prediction is taken,
the PC is loaded with the predicted target PC
value.

e Entries of branch-target buffer should
correspond to taken branches; but for 2-bit
predictor it is necessary to include non-taken

K branches as well. J

91

\CA III: CS 40013

G. Biswas :

Computer Sc & Engg : IIT Kharagpur

| nstruction

| F
|D
Normal
Instruction
Execution
Y
EX

Fetch the next
| nstruction

Isthe

ataken
branch

Entryin
Branch Target_Y€S

Buffer

Predicted
PC

'

Branch
Actually
Taken

Branch
Correctly Predcted

Next PC is Mispredicted

branch 'V Branch — nop fetched '
target, Instruction, fetch new

Mmake a new Instruction, delete the

entry buffer entry

92

\CA III:

CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Penalty I

~

Inst. in Buff. Prediction Actual Br. Cycles
yes taken taken 0
yes taken not taken 2
no taken 2
no not taken 0

93

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘ Branch-Target Buffer I

e Branch target buffer with the target

instruction.

~

94

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ ‘Integrated Instruction Fetch Unit'

e In a multiple-instruction-issue processor,

~

instruction fetch is not a simple stage of the
pipeline any more.

e A separate and integrated instruction fetch
unit is there to supply instructions to the
pipeline.

e Branch prediction, instruction prefetch,
instruction memory access and buffering are
put together in the integrated instruction fetch

K unit. J

95

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Indirect Jump Prediction'

e In a high-level program indirect jumps come
from case statement, computed goto’s of

FORTRAN, indirect procedure calls etc.

e But in a benchmark large percentage of

N

indirect jumps comes from procedure return.

~

96

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
‘ Procedure Return '

e Jump-target buffer is not very suitable for a

procedure return as the procedure may be
called from different points.

e Moreover there may not be any clustering over
time for calls from a point.

e A small buffer of return addresses is organized
as a stack.

N /

97

\CA III: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

@ The return address is pushed once the

e The predicted return address is perfect as long

~

Return Address Buffer'

procedure is called.

as the size of the buffer is larger than the call
depth.

_

98

