\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘Instruction Set Principles'

Chapter 2 - Computer Architecture : A Quantitative
Approach - Hennessy & Patterson

~

_

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

‘Instruction Set Architecture (ISA)I

e ISA is the of a

computer.

e Different broad classes of ISA.

— General purpose and special purpose ISAs.
— Complex ISA and reduced ISA.

— Classification base on source and destination
of operands in a CPU operation.

_

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Source and Destination Operands'

e Stack Architecture: zero(0) address

architecture.

® Accumulator Architecture.
e Register-Memory Architecture.

e Load-Store Architecture.

N /

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ Stack Architecture ' \

® There is a small hardware stack in the

processor. ALU operands are fetched from the
stack and the result is pushed back in the
stack.

e No operand address is specified with the
operation (zero address).

e Push and pop instructions are used to transfer
data between the processor stack and the
memory.

ko Instruction sizes of ALU operations is reducedj

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

POP__
op—2/res| _ Memory
> Op—]_ PUSH
stackP Stack
ad_d ALU

Figure 1: Stack Architecture

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘ Accumulator Architecture I

e One operand and the destination of an

operation is a special register called
accumulator. The accumulator address is
implicit.

e The other operand comes (often) from the

memory. The address may be direct or
register indirect.

N /

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

_ | Acc.

Memory

~dd ALU

Figure 2: Accumulator Architecture

~

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘ Register-Memory Architecture I

e One operand and the destination of an

operation is a general-purpose-register (GPR).
The GPR address is explicit but short.

e The other operand comes (often) from the
memory. The address may be direct or
indirect.

N /

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

' GPRs |

Memory

|
/AL

Figure 3: Register-Memory Architecture

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

Load-Store Architecture'

e Both operands and the destination of an

operation are general-purpose-registers

(GPRs). The GPR addresses are explicit but
short.

e The memory is accessed only to load a GPR or

to store some value from a GPR.

_

10

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

' GPRs |

Memory
(load/store)

~dd ALU

Figure 4: Load-Store Architecture

~

11

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
An Example I

Consider the instruction ¢ = a + b. The assembly

code for diferent architectures may look as
follows.

Stack Acc. Reg.- Mem. Load-Store

push a load a load rl, a load rl, a
push b add b addrl, b load r2, b
add store ¢ store rl, c add r3, rl1, r2
pop C store r3, c

N /

12

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e Some CPU may have special purpose registers

e Modern architectures do not support both

e Early computers were mostly accumulator or

~

‘ Note '

(original Intel86 registers were not really

general purpose).
operands from the memory.

stack architectures, but most mordern machins
(except special processors) have GPRs.

_

13

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ Advantages of GPRSI \

e Numbers of load/stores are less than the CPU
operations.

e GPR addresses bits are fewer in number
(small number of GPRs in the CPU) that
reduces the instruction size.

e GPRs are faster to acces (within the CPU).
Less memory access.

e Compiler can utilize GPRs more efficiently for
expression evaluation, parameter passing,

\ return value from function etc. /

14

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

An Example I

a*b - b*c - a*c

Stack GPRs

push a load rl, a
push b load r2, b
mult mult r3, r1, r2
push b load r4, c
push ¢ mult r5, r2, r4
mult sub r6, r3, rb

sub mult r7, r1, r4

~

15

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

An Example I

Stack GPRs

push a sub r8, r6, r7
push c
mult

sub

~

16

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 B

e Number of memory access are more in case of

stack machine.

e The order of evaluation is difficult to change in
a stack machine (though there are independent
operations).

e It may be necessary to change the order of
instructions for better utilization of the
pipeline.

N /

17

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ Another Order on GPR Architecture'

a*b - b*c - a*c

load r1, a

load r2, b

load r4, c

mult r3, rl1, r2 #Depends on r2
mult r5, r2, r4

mult r7, rl1, r4

sub r6, r3, r5 #Depends on r5
sub r8, r6, r'7 #Depends on r6

18

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

GPRs versus SPRS'

e A compiler can allocate variables in GPRs if
there are good number of them.

e SPRs can be better utilized in hand-optimized
code.

N /

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
Number of GPRS'

e Registers for expression evaluation.

e Registers for parameter passing (often
parameters are small in number).

e Registers for the value returned by a function.
e Register for return address.

e Registers for variable allocation (caller(callee)
saved before (within) function call).

N /

20

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Operands in ALU Instructions'

~

Op. | MemOp. | Example Arch.
3 0 add rl1, r2, r3 Alpha
3 3 add d1(rl), b, d2(r2) | VAX
2 1 add r1, d(r2) Intelx86

_

21

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

execution.

Memory Addressing I

e Memory addressing for data access.

e Memory addressing for changing the flow of

~

22

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Multibyte Data I

address 1s 32-bit.

e The memory is byte addressable and the

~

e An integer is 4B long (say): 0x04030201 is in a

register -
31 0
0000 0100 | 0000 0011 | 0000 0010 | 0000 0001

N

_

23

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Multibyte Data I

~

In the memory there are two different ways to
store the data from the location 0xAB - 0.

e Little Endian (LSB):

0xAB ---0 0xAB .---1 0xAB ---2 0xAB ---3

0000 0001

0000 0010

0000 0011

0000 0100

e Big Endian (MSB):

0xAB ---0 0xAB ---1 0xAB ---2 0xAB ---3

0000 0100

0000 0011

0000 0010

0000 0001

N

24

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Character Data '

e Little Endian (LSB):

~

0xAB ---0 0xAB ---1 0xAB ---2 0xAB ---3

A

B

C

D

31

@ This data in the register will be

0

D

C

B

A

25

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e A data of size 2" byte is said to be aligned if

e Single byte data is always aligned.
e A 2-byte, 4-byte and 8-byte data are aligned if

~

Aligned and Misaligned Data'

the starting address has k least significant bits
all zeros. Otherwise it is misaligned.

the address bits by = 0, b0y = 00 and byb,65 = 000
respectively.

_

26

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

Misaligned Data Access'

e Some computers do not allow misaligned data

aCCess.

e Misaligned data access is slower even if it is

permitted.

e In some machine misaligned data access

assembly instruction is translated to more
than one machine instruction.

27

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

Misaligned Data Access: an example'

An access to 4-bytes of data from the address OxE

(i.e. OxE --- 0x11) amounts to

e Two 4-byte data fetch, 0xC --- OxF and 0x10
-+ - 0x13.

e The extraction of the required bytes.

O0xC O0xD OxE OxF 0x10 O0Ox11 O0x12 0x13
Oth | 1st 2nd 3rd

N /

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Misaligned Data Access: an example'

The misaligned instruction mload r1, OxE is
translated to

load r2, 0xC

load r1, 0x10

andi r1, OxFFFF0000
andi r2, OxFFFF

and rl, rl, r2

~

29

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Specifying the Data Address'

~

Addr. Mode. Example Meaning
Register; rl =r2 4+ r3
Register, rl =rl 4 r2
Immediate rl =r1 + 4
Displacement rl =rl1 +
M[r2+4100]

Displacement is also called by some author as
indexed®.

2Computer Organization by Hamacher, Vranesic and Zaky, 3rd Ed.

N

_

30

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

‘Specifying the Data Address'

Addr. Mode. Example Meaning
Reg.Indirect rl =rl + M[r2]
Indexed rl =rl +
M[r24r3
Direct/ rl =rl1 +
Absl. M [1000]
Memory rl =rl1 +
Indirect M[M][r2]]

_

_

31

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Specifying the Data Address'

32

Addr. Mode. Example Meaning
Autolnc. rl =rl + M[r2]
r2 =r2 44
AutoDec. r2 =r2-4
rl =rl 4+ M]r2]
Scaled rl =rl +

M[r2 + 4*r3 4 100]

N /

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ ‘Effect of Addressing Mode' \

e Complex addressing mode may increase the

average CPI and add to the complexity of
hardware implementation.

® Addressing modes with side-effect complicates
the restarting of an instruction after
page-fault.

@ There is wide variation in instruction length
due to complex addressing modes.

e Some addressing modes may have poor

K utilization by a compiler. /

33

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Measurement with Addressing Mode'

Measurement on VAX machine.

Displacement
Immediate

Register Indirect
Scaled

~

34

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ ‘Sizes of Displacement and Immediate Data' \

® These affect the

® The measurement shows that there are
and also a good number of
- these are due to
different storage areas for data.

e There are of immediate data
- constant in an expression, comparison for
branch and initilization of variables (register).

e Often the immediate constants are small

k (unless it is for an address).

_

35

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Special Purpose Addressing Modes'

e Addressing mode for circular buffer in DSP -
start-address and end-address registers with
every address register.

e Bit reverse addressing for FFT calculation.

N

~

36

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e Displacement, immediate and register indirect

e Size of displacement should be 12-16 bits and

e Other than of

~

Data Addressing: Summary'

addressing modes are most important.
the size of immediate data should be 8-16 bits.

registers (after using the content as address),
similar instructions are rarely used.

_

37

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Primitive Data Types'

e Character: or 16-bit Unicode.

e Integer: , short (16-bit)
and long (64-bit).

e Floating-point: single (32-bit) or double
(64-bit) word

e BCD: for exact
decimal arithmetic.

N

~

_

38

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Application Specific Data'

e vertex (z, y, z and w, each 32-bit
floating-point), pixel (32-bit, four 8-bit
channel, R, G, B and A).

the - fraction within the range —1 to +1.

N

~

e fixed-point - binary point between the and

_

39

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

_

Basic Operation Types'

Arithmetic and Logical: basic integer and
logical operations.

Data Transfer: memory-register,
register-register.

Control: branch, jump, call, return

I0: 10 instructions for separate space
processor.

Systems: systems call, memory management.

Floating-point: floating point operations.

~

_

40

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Application Specific Operations'

e String: operations on strings e.g. string copy,

move, compare, search etc.
e Graphics: vertex, pixel operations.

e Decimal: operations on BCD data and
conversion to other format.

N /

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Control Flow Instructions'

Conditional branches.
Unconditional jumps.
Procedure calls.

Return from procedure.

System calls or software interrupts

or traps.

~

_

42

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

‘Control Flow: Addressing Modes'

Addr. Mode. Example Meaning
Implicit PC =PC 4+ k
Direct Address jmp 1000 PC = 1000
Register Indirect jmp rl PC =rl1
Memory Indirect jmp (rl) PC = M]|r1]
PC Relative jmp (-100) PC = PC - 100

N /

43

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ ‘J ump target not Known at Compile Time' \

The is loaded from the
memory to the at run-time.

e Case and switch statement in a programming
language.

e Virtual function call in object-oriented
languages.

e Calling a function through function pointer
(passes as parameter) or higher-order and
polymorphic function in functional languages.

k. Dynamically shared libreries. J

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Measurements: PC-relative Addressing'

e 75% branches are in the forward direction.

e Most displacements are less than 8-bits.

N

~

45

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

Branch Conditions I

Often the branch conditions are simple and
large number of them are comparison with
Zero.

The most frequent comparisons are ’<’, <’

—

and ’

They ae treated as special cases in some
architecture.

DSPs has special instruction to repeat a set of

instructions.

_

46

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e Condition bits in a special register - condition

e Result of a test saved in a register which is

e Compare and branch instruction - execution of

~

Specifying Branch Conditions'

is set free of cost, proble with out of order

execution.
tested for condition - uses a register.

only one instruction, the instruction may be
complex for pipeline implementation.

_

47

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

e The

‘Procedure Call and Return'

e The - return

address, status word, and may be the CPU
registers.

or in a link register or in a GPR.

e Some old architecture used to

(on return) all CPU registers. In modern

architecture for store

and load.

on the stack

~

_

48

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘Who Saves the Registers‘?'

e Caller saving those registers that it wants to
preserve across the call.

e Global variable in a register (load/store).

e Convension specified by application binary
interface (ABI).

e Callee saving a register before it wants to use.

~

N /

49

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

specifier.

‘ Encoding Instructions I

e Specification of operation: opcode.

e Number of memory and register operands.

~

® Addressing modes for each operands: address

_

50

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

~

‘ Different Encodings I

e Variable length instructions: VAX, Intel 80x86

etc

e I'ixed Length: MIPS, PowerPC etc.
e Hybride: IBM 360/70, MIPS16 etc.

51

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

Variable Length Instruction: An Intel Example'

pushl %ebp

0x55

Operation + Reg. Address

O 1.0 1/0 1 O 1

push r32 ebp

000 o001 010 o011 100 101 110 111

eax ecx edx ebx esp ebp esi edi

52

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

~

Variable Length Instruction: An Intel Examplel

pushl -512(%ebp,%ebx,4)

OxFF B4 9D 00 FE FF FF

FF

B4 9D

00 FE FF FF

FF

10

110 | 100 || 10 | 011 | 101

-512

N

(101)

Opcode (FF 110), 32-bit disp (10), base + index
(100), scale 4 (10), index - ebx (011), base - ebp

_

53

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Variable Length Instruction'

Length of an Intel 80x86 instruction may vary
between 1 - 17 bytes.

N

~

54

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

ALU Instruction (R-format)

Fixed Length Instruction: MIPS Examplel

~

op(6)

rs(5) | rt(5)

rd(5)

shmat(5)

funct(6)

N

_

55

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 A

‘Fixed Length Instruction: MIPS Examplel

Branch and Immediate Data Instructions
(I-format)

op(6) | rs(5) | rt(5) | imm./displ. (16)

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Fixed Length Instruction: MIPS Examplel

Jump Instructions (J-format)

op(6) | Jump address (26)

~

57

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘RISC in Embedded Application'

e Smaller and more compact code - restriction

on memory size.

e T'wo Instruction formats.

e Lesser number of operations, small address

and immediate data size, fewer registers etc.

~

58

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘RISC in Embedded Application'

IBM keeps the same instruction set but
it in the memory.

it at the ime of fetch
and puts 32-bit instruction in the cache.

No new compiler is required but the effective
cache utilization is less.

How to fetch the next instruction on
jump/branch?

~

59

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

Review '

General purpose register (GPRs) with
load /store architecture.

Good support of displacement (12-16 bit),
immediate (8-16 bit) and register indirect
addressing modes.

Support for 8-, 16-, 32, and 64-bit integers and

64-bit IEEE 754 floating-point numbers.

Support for simple instructions e.g. load,
store, add, subtract, move, shift etc.

~

_

60

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

4 N
Review

e Compare less, equal, not equal, PC-relative

banch (8-16 bit offset), jump, call, return.

e Fixed instruction encoding for performance or
variable encoding for small code size.

e Addressing modes should be orthogonal.

e At least 16 or 32 GPRs.

N /

61

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

‘ MIPS64: Registers I

® : RO, R1,---, R31 - each of size

e FPRs: - IEEE 754 single and
double precision formats.

e The value of

e A few special registers.

N

~

62

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

e FFPRs:

o A few

N

MIPS64: Data Type'

: RO, R1,---, R31 - each of size
- IEEE 754 single and

double precision formats.

e The value of

special registers.

~

63

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

MIPS64: Data Type'

e Integer: 8-, 16-, 32-, 1nd 64-bit.

: 32- ans 64-bit IEEE 754.

~

64

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

MIPS64: Addressing Modes'

e Immediate: 16-bit.

: 16-bit.

e Register Indirect: free of cost.

~

65

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

‘MIPSG4: Instruction Formats'

e R-format: register ALU operations.

: Immediate, branch etc.

e J-format: jump.

~

66

\CA II: CS 40013

G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

MIPS64: Examples I

LB
LH
LW
LD
LWU

Load byte
Load half-word
Load word

Load f-word

Load word unsigned

~

67

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

MIPS64: Examples I

L.S Load floating-point single precision

L.D Load floating-point double precision

~

68

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

MIPS64: Examples I

L (load), S (store), ADD (add), DADD (double
add), DADDU (double add unsigned), S (store),
LUI (load upper immediate), DSLL (shift left
logical), DSLT (set less than),

N

~

69

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

/ MIPS64: Control Flow Instructions.

e J target: PC|[27 .. 0] = 4*target - the jump
“target” is 26-bits, an instruction is aligned in

~

word boundary, the ”target” is multiplied by 4
and loaded in PC. Higher bits of PS
unchanged(?).

e JAL name: R31 = PC+4; PC|[27 .. 0] =
4*target - the return address is saved in the
link register.

e JALR R1: R31 = PC+4; PC = R1 - register

indirect jump and link.

N /

70

\CA II: CS 40013 G. Biswas : Computer Sc & Engg : IIT Kharagpur

-~

N

MIPS64: Control Flow Instructions.

e JR R1: PC = RI1 - register indirect jump.
e BEQZ R1, name: if (R1 == 0); PC = PC+4

+ 4*name - branch eq. zero.

e MOVZ R1, R2 R3: if (R3 == 0); R1 = R2 -

conditional move.

~

71

