

- We start our discussion about the size of a set. It has some purpose in connection to description of languages.
- A set is finite, if it has finite number of elements and its size is the number of its elements
- $\overline{}$ • The size of $A = \{a, b, c, d\}$ is 4, the size of the set of all prime numbers between 1 to 100 is 25 etc.

 $\overline{}$

- The size of a finite set A is larger than the size of a finite set B , if A has more elements than B.
- $\overline{}$ \int • But how do we compare two infinite sets e.g. the set of natural numbers, $\mathbb{N} = \{0, 1, 2, \cdots\}$ and the set of integers, $\mathbb{Z} = \{\cdots, -1, 0, 1, \cdots\} ?$

- In an obvious sense the set of integers is larger than the set of natural numbers, as N ⊂ Z.
- $\overline{}$ • But in some other sense we can establish a one-to-one correspondence between the elements of these two sets.

 $\overline{}$

✫ \int The set of integers is equinumerous to the set of natural numbers $(\mathbb{N} \simeq \mathbb{Z}).$

- Similarly we can establish a bijection between the set of integers (^Z) and the set of rational numbers (^Q).
- $\overline{}$ \int • We have a bijection $f_1 : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, $f_1(n) = (a+1,b+1)$, where $n = 2^a(2b+1)$ and a, b are non-negative integers.

 $(1,1)\mathbf{1} \quad (1,2)\mathbf{3} \quad (1,3)\mathbf{5} \quad \cdots$ $(2,1)2\quad (2,2)6\quad (2,3)10\quad \cdots$ $(3,1)4$ $(3,2)12$ $(3,3)20$ \cdots $(4,1)8$ $(4,2)24$ $(4,3)40$ \cdots

 $\overline{}$

 \int

The functions f and f_1 can be used to construct a bijection from $\mathbb{N} \to \mathbb{Z} \times \mathbb{N}$.

 $(f \times id_{\mathbb{N}}) \circ f_1 : \mathbb{N} \to \mathbb{N} \times \mathbb{N} \to \mathbb{Z} \times \mathbb{N}.$

As an example

 $\left(\begin{array}{c} \f_1 \f_2 \end{array}\right)$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $(f \times id_{\mathbb{N}})((f_1(40)) = (f \times id_{\mathbb{N}})(4,3) = (-2,3),$ as $40 = 2^3(2 \times 2 + 1),$ so $f_1(40) = (3 + 1, 2 + 1) = (4, 3), \text{ and } f(4) = -1.$

- As $(f \times id_N) \circ f_1$ is a bijection between N and Z × ^N, its inverse is also ^a bijection and therefore is an injective function from $Z \times N \to N$.
- $\overline{}$ • According to the SchröderBernstein theorem, if there are injective functions $f: A \to B$ and $g: B \to A$, there is a bijection between A and B i.e. $A \simeq B$.

 $\overline{}$

- The set of rational numbers $\mathbb{Q} \subseteq \mathbb{Z} \times \mathbb{N}$. An injective function from $\mathbb{Z} \times \mathbb{N} \to \mathbb{N}$ gives an injective function from $\mathbb{Q} \to \mathbb{N}$.
- In the other direction, an injective function from $\mathbb{N} \to \mathbb{Q}$ is $n \mapsto (n, 1)$ i.e. $n/1$.
- $\overline{}$ \int • So by SchröderBernstein theorem there is a bijection from $N \to \mathbb{Q}$ i.e. they are ${\rm equinumerous} \,\, (\mathbb{N} \simeq \mathbb{Q}).$

- The obvious question is are all infinite sets equinumerous?
- The famous theorem of Cantor^a gives the negative answer.
- No set is equinumerous to its power set i.e. there cannot be ^a bijection from ^a set $A \rightarrow \mathcal{P}A$.

✫ ed ^aGeorg Ferdinand Ludwig Philipp Cantor, German mathematician, invented set theory, 1845-1918

- The statement is trivially true if $A = \emptyset$ as its power set $\{\emptyset\}$ has one element.
- If the A is non-empty, there is an obvious injective function from $A \to \mathcal{P}A : a \mapsto \{a\}.$
- $\overline{}$ \int • So the actual claim of Cantor's theorem is that there cannot be any surjective function from $A \to \mathcal{P} A$.

- The proof of the theorem is by contradiction - we assume that there is ^a surjective function $g: A \to \mathcal{P}A$ and show that it leads to ^a contradiction.
- $\overline{}$ \int • Note that for each $a \in A$, the image $g(a)$ is a subset of A, an element of the power set of A.

- Consider the subset $B = \{a \in A : a \notin g(a)\}\$ of A. The subset B is the collection of all elements of A such that they are not element of their images under g .
- As $B \in \mathcal{P} A$ and g is a surjective map, there is an element $a_0 \in A$ so that $g(a_0) = B$.
- $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ \int • The question is whether a_0 is an element of B.

- If we assume $a_0 \in B =$ $g(a_0)$, we have to conclude that $a_0 \notin B$, by definition of B.
- But if we assume $a_0 \notin B =$ $g(a_0)$, we have to conclude that $a_0 \in B$, by definition of B.
- So it is a contradiction $-a_0 \in B$ if and only if $a_0 \not\in B$.
- $\begin{array}{c} \hline \end{array}$ \bigcup • Hence the assumption that $g: A \to \mathcal{P}A$ is a surjective map is false.

There are infinite sets that are not equinumerous.

$A \not\simeq {\cal P} A \not\simeq {\cal P} {\cal P} A \not\simeq {\cal P} {\cal P} {\cal P} A \; \cdots$

There is ^a hierarchy of infinite sets.

 \int

In ^a more concrete terms we shall demonstrate that

- the set of natural numbers $\mathbb N$ is not equinumerous to the collection of all functions from $\mathbb N$ to itself, and
- $\overline{}$ \int • the set of natural numbers $\mathbb N$ is not equinumerous to the collection of the set of real numbers R.

 \bullet Given a subset B of natural numbers, we consider a function $\mu_B: \mathbb{N} \to \{1,2\}$ defined as

$$
\mu_B(n) = \begin{cases} 1 & \text{if } n \in B \\ 2 & \text{if } n \notin B \end{cases}
$$

 $\overline{}$ • This shows that $\mathcal{P} A$ is equinumerous to all functions from $\mathbb N$ to $\{1,2\}$ $(\{1,2\}^{\mathbb N}).$

 $\overline{}$

- So $\mathbb N$ is not equinumerous $\{1,2\}^{\mathbb N}$.
- Again all functions from $\mathbb N$ to $\{1,2\}$ $(\{1,2\}^{\mathbb N})$ is a subset of all functions from $\mathbb N$ to $\mathbb N$ $(\mathbb N^{\mathbb N}).$
- So $\mathbb N$ cannot be equinumerous to $\mathbb N$ $\mathbb N$.
- $\overline{}$ • In fact it is not difficult to show that N^k is also not equinumerous to N $^{\mathbb{N}}, \text{ where } k \in \mathbb{N}.$

 $\overline{}$

- This result is very important in connection to effectively definable or computable functions from N $k \to \mathbb{N}$, where k is a positive integer.
- $\overline{}$ • There are functions that cannot be effectively defined.

- To prove that $N \nleq \mathbb{R}$ we first show that the interval $(0,1) \subseteq \mathbb{R}$ is equinumerous to \mathbb{R} .
- There is a bijection $\tan:(-\pi/2,\pi/2)\to(-\infty,\infty).$
- Also there is a bijection $f_2: (0,1) \to (-\pi/2, \pi/2) : x \mapsto \frac{\pi(2x-1)}{2}$ $\overline{2}$.
- $\overline{}$ \bigcup • So tan ◦ f_2 is a bijection from $(0, 1) \rightarrow \mathbb{R}$, i.e. $(0,1)\simeq\mathbb{R}.$

- Finally we demonstrate that $N \not\approx (0, 1)$. The proof is again by contradiction, well known as diagonalization.
- $\overline{}$ \int • Suppose there is a bijective map $h: \mathbb{N} \to (0, 1)$. So for every natural number i there is a non-zero proper fraction $h(i) \in (0,1)$ and that exhausts all such fractions.

- Each $h(i)$ can be written as an infinite decimal fraction, $0.h_{i1}h_{i2}\cdots h_{ij}\cdots$, where h_{ij} is ^a decimal digit.
- We construct a fraction $d = 0.d_1d_2\cdots d_i \cdots$ as follows.

$$
d_i = \begin{cases} 4 & \text{if } h_{ii} = 5 \\ 5 & \text{otherwise.} \end{cases}
$$

 \int

- The fraction d is not equal to any $h(i)$ (by construction) and this contradicts our assumption that h is a bijection.
- So $\mathbb{N} \not\cong \mathbb{R}$. It is possible to show that $\mathcal{P} \mathbb{N} \simeq \mathbb{R}$.

 \int

- A set A is called finite if there is $n \in \mathbb{N}$ such that $A \simeq \{1, \cdots, n\}.$
- A set A is called countably infinite if $A \simeq \mathbb{N}$.
- A set A is called countable if it is either finite or countably infinite.
- $\overline{}$ • A set A is called uncountable if it is not countable.

 $\overline{}$

- Any language has ^a finite set of primitive symbols known as the alphabet of the language.
- $\overline{}$ \int • The alphabet of decimal number system is $\{0, 1, \cdots, 9, +, -, \cdot\}.$ The English language alphabet has more symbols including a, \dots , z, A, \cdots, Z , punctuation marks etc.

- For our discussion we shall often take small size of alphabet e.g. $\{0,1\}, \{a,b,c\}$. Symbols like Σ , Γ are used to denote an alphabet.
- A finite sequence (possibly empty) of the elements (called letters) of the alphabet Σ is called ^a finite word.
- $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ • Similarly an infinite sequence of letters is called an infinite word.

 $\overline{}$

 $\overline{}$

Alphabet, Words and Languages

- Let our alphabet be $\Sigma = \{a, b\}$. Finite words over Σ are $\varepsilon(\mathrm{empty\ word}), a, b, aa, aba, \cdots.$
- A finite word $x = \sigma_1 \cdots \sigma_n$, where $\sigma_i \in \Sigma$ is of length *n* and we write $|x| = n$.
- $\overline{}$ \int • The word x may be viewed as an element of Σ^n or a map $x: \{1, \cdots, n\} \to \Sigma$, where $x(i) = \sigma_i.$

- Similarly infinite words over the alphabet $\Sigma = \{a, b\}$ is an infinite sequence of a 's and b 's e.g. $u = aabaabaabaab$...
- It may be viewed as a map $u : \mathbb{N} \to \Sigma$, where $u(i) = \sigma_i \in \Sigma.$

 $\overline{}$

 \int

- All finite words of length n are elements of $\Sigmaⁿ$. So the collection of all finite words over Σ is $\bigcup_{n\geq 0}$ $\sum n$.
- $\overline{}$ \int • This set is called Σ^* . If $\Sigma = \{a, b\}$, then first few elements Σ^* are $\{\varepsilon, a, b, aa, ab, ba, bb, aaa, \cdots\}.$

- The collection of infinite words or ω -words over an alphabet Σ is denoted by Σ^{ω} .
- If there is only one element in the alphabet, then there is only one element in Σ^{ω} !

 $\overline{}$

 \int

 $\overline{}$

Alphabet, Words and Languages

- If there are k symbols in Σ , then words of Σ^* may be viewed as numerals of base- $(k+1)$ number system.
- $\overline{}$ \int • As an example, let $\Sigma = \{a, b\}$. We may view $a \mapsto 1$ and $b \mapsto 2$, and $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \dots \}$ as $\{0, 1, 2, 11, 12, 21, 22, 111, \cdots\}$, numerals of base-3 number system.

We consider languages of finite words over Σ i.e. the subsets of Σ^* .

 $\overline{}$ • As the size of Σ^* is countably infinite, the size of its power set i.e. the size of the collection of all possible languages of finite words over Σ is uncountably infinite.

 $\overline{}$

 $\overline{}$

Alphabet, Words and Languages

- The question is how to give an effective description of ^a language.
- If the language is a finite collection of finite words, we can prepare ^a list of its words. This is possible in principle.
- $\overline{}$ • But if the language is an infinite collection, or any collection of ω -words, we need some formalism to describe them.

- One simple but important need is to test membership of a word in a language, x ? $\in L,$ where $x \in \Sigma^*$ and $L \subseteq \Sigma^*$.
- $\overline{}$ • We may have to test whether a positive integer is ^a prime, or ^a undirected graph is connected, or ^a text is ^a valid C program.

 $\overline{}$

- In fact any 'precisely defined' decision problem can be formulated as a membership problem of some language. So it is important to describe ^a language.
- But any description will use some alphabet $\Gamma^{\rm a}$.
- $\begin{array}{|c|c|} \hline \hline \hline \end{array}$ • A description of a language $L \subseteq \Sigma^*$ is a sequence or ^a finite word over Γ.

^aThe alphabet of the language being described (object language) is Σ .

 $\overline{}$

- As size of Γ^* is countably infinite, the number of valid descriptions are countable.
- But the size of the collection of languages over $\Sigma, \, {\mathcal P} \Sigma^*,$ is uncountable.
- $\overline{}$ • So there is no surjective map from $\Gamma^*\to \mathcal{P}\Sigma^*$.

 $\overline{}$

