
Operating System IIIT Kalyani 1✬

✫

✩

✪

Process Scheduling - I

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 2✬

✫

✩

✪

Scheduler

• The process scheduler of kernel divides the

CPU time among the ready processes.

• It selects a process from the ready queue and

assigns the CPU to it.

• A scheduler follows some policy for selecting

a ready process to run. It also may have a

policy to preempt a running process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 3✬

✫

✩

✪

Goal of Scheduling Policy

• Best utilization of CPU time.

• Fast completion of a process.

• Fast response to user interaction or time

critical requirements.

• There may be requirements other than

‘time’.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 4✬

✫

✩

✪

When is it Necessary

Under the following situations a process from

the ready queue is scheduled to run.

• The running process terminates.

• The running process enters the wait state for

some event to occur e.g. completion of an

IO, release of a lock etc.

• Some internal event has occurred e.g. a page

fault, a divide-by-zero etc.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 5✬

✫

✩

✪

When is it Necessary

• There may an external event such as an

interrupt from an IO device a.

– A timer interrupt when the time slice of

the running task is over.

– An interrupt that makes a higher priority

process ready.

aBut every interrupt may not cause new scheduling.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 6✬

✫

✩

✪

Scheduling Policy

• A scheduling policy is non-preemptive if it

allows the running process to use the CPU

until it enters a wait state or terminates.

• The policy is called preemptive if the

running process can be switcheda even

within its CPU burst.
aDue to the end of its time quantum or to schedule a high priority process

that is ready to run.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 7✬

✫

✩

✪

Different Measures of Good Performance

• A scheduling policy depends on the notion of

good performance of a system.

• There are different performance measures in

terms of reducing some ‘time’ e.g.

turnaround time, response time etc..

• Often one goodness requirement is in conflict

with another. Fast response time increases

turnaround time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 8✬

✫

✩

✪

Different Measures of Goodness

• Throughput is the number of tasks

completed in some unit of time. In a

non-preemptive system, the throughput

should be higher as there is lesser overhead

of context-switching.

• Turnaround time is the time spent between

the starting to the finishing of a task.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 9✬

✫

✩

✪

Different Measures of Goodness

• Waiting time of a process is the time it

spends in the ready queue.

• Response time is meaningful in an

interactive or a reactive system. It is the

time between the stimulus (input) and the

response (some output).

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 10✬

✫

✩

✪

Different Measures of Goodness

• It is clear that non-preemptive policy is not

good for response time. So it is not suitable

for an interactive or a real-time system.

• In a non-preemptive system, a high priority

process may have to wait for a lower priority

process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 11✬

✫

✩

✪

Interrupt, System Call and Exception

A running process enters the kernel mode when
the CPU receives an interrupt from an IO
device, it sends a request to the kernel for some
service through a system call, or some exception
condition generated during its execution.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 12✬

✫

✩

✪

Interrupt and Contest-Switching

• Once the interrupt is serviced, the

interrupted process may return to the user

mode and continue.

• If it is a timer interrupt of a time sharing

system, the process may be put to ready

queue and another ready process is

scheduled.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 13✬

✫

✩

✪

Interrupt and Contest-Switching

• If the interrupt service changes the state of a

higher priority process from wait to readya,

the current process may be preempted to

schedule the higher priority process.

• So every interrupt does not causes a

context-switch.
aMay be due to completion of its IO.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 14✬

✫

✩

✪

System Call and Context-Switching

• A system call requesting a service, changes

the CPU mode from user to kernel.

• But it may or may not lead to the

suspension of the calling process if it can be

serviced (non-blocking) immediately.

• A blocking system call suspends the process

and the scheduler is invoked to switch

context.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 15✬

✫

✩

✪

System Call and Context-Switching

• An example may be a request for a new page

in the heap area.

• Even a read() system call by a process, to

read data from a disk file may not require an

immediate disk access. The data may be

available in the buffer cachea of the kernel.
aPossibly the buffer cache was populated during file open or during the pre-

vious read.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 16✬

✫

✩

✪

Exception and Context-Switching

• Some of the exceptions e.g. divide-by-zero

may terminate the processa.

• Some may lead to suspension of the process

e.g. a page-fault where the page is to be

loaded from the diskb. There will be

context-switching in such a situation.

aIn case of programming error, the kernel delivers a signal to the offending

process and the signal handler decides the fate of the process.
bFrom swap area or from the file system.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 17✬

✫

✩

✪

Exception and Context-Switching

• But some exceptions can be serviced without

delay and the process may be restarted

immediately.

• There may be a page-fault due to the

overflow in the default stack space.

• If the kernel policy permits, the stack space

may be augmented immediately, and there is

no need to suspend the process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 18✬

✫

✩

✪

Preemption in Kernel Mode

• A process running in the user mode may be

preempted. But preemption may be

prohibited when it is running in the kernel

modea.

• This may be achieved for a uniprocessor

system by disabling the interruptsb.

aIn the middle of update of kernel data stricture.
bNo context-switch should occur in the middle of any modification of kernel

data structures, to avoid race condition in kernel.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 19✬

✫

✩

✪

Preemption in Kernel Mode

• A non-preemptive kernel may be simpler,

but is not suitable for real-time tasks.

• A real-time request needs to be serviced

within a bounded time.

• Moreover in a multiprocessing environment

disabling interrupt for several processors

running in the kernel mode may be difficult.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 20✬

✫

✩

✪

Preemption in Kernel Mode

• So in a modern OS a process running in the

kernel mode, or a kernel thread can also be

preempted.

• Code to update shared data structures

within the kernel e.g. list of PCBs, are

guarded by spinlocks to avoid race.

• These codes are not too long to affect the

performance.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 21✬

✫

✩

✪

Scheduler and Dispatcher

• Actions for context-switch takes place in the

kernel mode.

• Following some policy, the scheduler picks up

a ready process to allocate the CPU.

• Once a process is chosen, another module

called dispatcher is invoked. It performs the

actual task of context-switching.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 22✬

✫

✩

✪

Events in User Process

• We have already mentioned that the

following possible events transfer the control

from user program to kernel code. They also

changes the CPU mode to privileged.

• Hardware interrupt, System call (software

interrupt or trap), and Illegal action in the

running process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 23✬

✫

✩

✪

Necessary Actions and Transition to Kernel

• The kernel should get the information about

the nature of the event for its subsequent

action in the event handler.

• If the current process is not terminated due

to the event, it is to be restarted. So its

state need to be saved.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 24✬

✫

✩

✪

Necessary Actions and Transition to Kernel

• In cases of interrupt and system call, the

restart will be from the next instruction.

• But in case of an exception, if it can be

restarted, then it is from the offending

instruction.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 25✬

✫

✩

✪

Necessary Actions and Transition to Kernel

• To restarted the normal execution of a

process in the user mode, its saved CPU

state is loaded back in the CPU.

• This includes program counter, stack pointer

and other register contents.

• The CPU state is saved partly by the

hardware and partly by the event handler

routine of the kernel.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 26✬

✫

✩

✪

System Call

• Information related to a system call are

available in the CPU registers.

• A special machine instruction called trap

(software interrupt) is executed to transfer

the control from the user mode to the kernel

mode.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 27✬

✫

✩

✪

System Call

• The hardware micro-operations

corresponding to the machine instruction of

trap e.g. syscal saves the contents of

essential CPU registers e.g. program-counter

(PC), stack-pointer (SP) etc.

• The CPU mode is switched to privileged.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 28✬

✫

✩

✪

System Call

• The stack-pointer register is loaded with the

value of the kernel stack of the processa.

• User mode program counter and

stack-pointer are saved in the kernel stack.

• The PC is loaded with the address of the

event handler within kernel.
aThe story is complicated!

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 29✬

✫

✩

✪

IO Interrupt

• An IO interrupt is an asynchronous event.

The running process does not have any

control or prediction over its time of

occurrence.

• So in case of interrupt, the micro operations

similar to the machine instruction trap is

done automatically by the CPU hardware to

save its state.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 30✬

✫

✩

✪

In Kernel Mode

• The kernel thread of the process starts in the

privileged mode on the kernel stack.

• A part of the CPU statea is already saved on

the kernel stack. If necessary, other registers

may also be saved before the computation of

the event handler starts.

• The scheduler is invoked once the event

handler decides a context-switch.
aProgram counter, user stack pointer etc.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 31✬

✫

✩

✪

Scheduler is Invoked

• The scheduler following its policy picks up a

process and invokes the dispatcher.

• A part of the CPU state is already saved in

the kernel stack. But more process

information needs to be saved in the PCB

for a context-switching.

• The context of the scheduled process is

loaded and the mode is changed to usera

aAgain the story is more complicated.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 32✬

✫

✩

✪

Scheduler is Invoked

• The question is in which context (stack)

does the scheduler-dispatcher runs.

• In a monolithic kernel, they may run on the

kernel stack of the caller (the user process in

kernel mode).

• Otherwise the scheduler may be a thread

(per CPU) with its own stacka.
aIn this case there will be two low-level context-switch, current process →

scheduler-dispatcher → scheduled process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 33✬

✫

✩

✪

Scheduling Policies

• The kernel may classify processes and use

one or more scheduling policies to select a

process from those that are readya.

• A scheduling policy depends on the

assumption about the average job mix

(processes running at a time) or workload of

a system.
aThere may be more than one ready queue. There are more than one proces-

sors.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 34✬

✫

✩

✪

Simplified Workload Assumptions

Following assumptions are unrealistic but that

is our starting point.

• Same execution time for each process.

• A process runs from start to finish. There is

no wait for I/O etc.

• All processes have started almost at the

same time.

• The execution time is known a priori.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 35✬

✫

✩

✪

FCFS Scheduling

• Under these assumptions and considering

the turnaround time or waiting time as the

metric, a simple policy is First-come,

First-served (FCFS).

• The first process from the ready-queue is

scheduled, that runs to its completion.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 36✬

✫

✩

✪

FCFS Scheduling

• The average turnaround time does not

change by the scheduling order as each

process takes equal amount of time.

• But if we remove equal execution time

assumption for all processes, the situation

changes as follows.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 37✬

✫

✩

✪

FCFS Scheduling

• Now the average turnaround time in FCFS

depends on the arrival order of jobs.

• it is bad for small jobs coming at the end.

• Let P1(30), P2(10), P3(5) be three processes

ready to run on CPU. Their execution times

are 30, 10 and 5 units respectively.

• Following are average turnaround and

waiting times for different scheduling orders.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 38✬

✫

✩

✪

FCFS Scheduling

Arrival Order Average Waiting Turnaround

1st − 2nd − 3rd Time Time

P1 − P2 − P3
0+30+40

3 ≈ 23.33 38.33

P3 − P2 − P1
0+5+15

3 ≈ 6.67 21.66

P2 − P3 − P1
0+10+15

3 ≈ 8.33 23.33

The average is the lowest when the arrival order
is ascending on execution time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 39✬

✫

✩

✪

Shortest-Job First Scheduling

• A suggested improvement over FCFS for a

set of jobs arriving at the same time, but

different running times is the Shortest-Job

First (SJF) policy.

• In this policy, the job with the shortest run

time is picked up from the ready queue to

schedule.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 40✬

✫

✩

✪

Shortest-Job First Scheduling

• If we consider the previous example,

processes will be scheduled according to the

second sequence P3 − P2 − P1.

• This algorithm is optimal in terms of average

waiting or turnaround time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 41✬

✫

✩

✪

Shortest-Job First Scheduling

• Let there be processes P1, · · · , Pn in the

ready-queue. Their executions times are

b1, · · · , bn such that bi1 < · · · < bin.

• If the sequence of scheduled processes are

Pj1 < · · · < Pjn, the average waiting time is

as follows.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 42✬

✫

✩

✪

Shortest-Job First Scheduling

• Waiting time is

0 + bj1 + (bj1 + bj2) + · · ·+ (bj1 + · · ·+ bjn−1
)

n

=
(n− 1)bj1 + (n− 2)bj2 + · · ·+ 2bjn−2

+ bjn−1

n

• It will be minimum when

bjk = bik , k = 1, · · · , n.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 43✬

✫

✩

✪

Execution Time and CPU-Burst Time

• Our assumption about total execution time

can be replaced by CPU burst time.

• A CPU burst time is the time a process can

keep the CPU engaged without any other

event e.g. I/O.

• Execution of a process has a sequence of

CPU bursts and wait for I/O or other event.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 44✬

✫

✩

✪

Shortest-Job First Scheduling

• The main problem with SJF algorithm is the

prediction of the next CPU-burst.

• There is a theoretical suggestion for the

prediction of (n+ 1)th-burst bpn+1

bpn+1 = αbn + (1− α)bpn, 0 ≤ α ≤ 1,

where bpn is the predicted nth burst and bn is

the actual nth burst.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 45✬

✫

✩

✪

Shortest-Job First Scheduling

• The expression of bpn+1 is the weighted

average of the burst history and the last

burst.

• If α = 1, the predicted next burst is same as

the previous burst. If α = 0, the prediction

is same as the previous prediction.

• This algorithm cannot be implemented, but

is used as a benchmark.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 46✬

✫

✩

✪

Preemptive Shortest-Job First Scheduling

• The SJFS algorithm can be preemptive. A

newly arrived or ready job with a shorter

CPU-time (burst) will preempt a running

job if its predicted remaining CPU time

(burst) is longera.

• This is known as Shortest Remaining Time

First (SRTF) algorithm.
aShorter CPU-burst time gets a higher priority. The policy may lead to

starvation.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 47✬

✫

✩

✪

Preemptive SJF or SRTF

• Consider the following example.

Process Arrival Time Predicted Burst

P1 0 10

P2 2 7

P3 4 4

P4 6 2

• Running times of these processes are:

P1(0− 2), P2(2− 4), P3(4− 8), P4(8− 10),

P2(10− 15), P1(15− 23).

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 48✬

✫

✩

✪

Preemptive Shortest-Job First Scheduling

• The waiting time per process are

Process Arrival Time Waiting Time Turnaround Time

P1 0 15− 2 = 13 23

P2 2 10− 2− 2 = 6 13

P3 4 4− 4 = 0 4

P4 6 8− 6 = 2 4

• Average waiting time is 13+6+0+2
4 = 5.25,

turnaround time is 23+13+4+4
4 = 11.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 49✬

✫

✩

✪

Priority Scheduling

• A number is associated to a process called

its priority depending on its “importance”.

• A process in the ready queue with the

“highest value” of prioritya is scheduled first.

• The ready queue may be maintained as a

heap on the values of priority

aA lower priority number may represent a higher priority or it may be other

way.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 50✬

✫

✩

✪

Priority Scheduling

• The shortest job first policy may be viewed

as a priority scheduling where a job with

higher predicted CPU burst has a lower

priority.

• In general priorities are either set by the user

or computed by the system.

• A priority scheduling can be preemptive or

non-preemptive.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 51✬

✫

✩

✪

Priority Scheduling

• If the priority scheduling is preemptive, a

running lower priority job will be preempted,

if a higher priority job is ready to run.

• The policy may lead to starvation of low

priority processes.

• A solution to starvation is aging - a gradual

increase of priority of a waiting process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 52✬

✫

✩

✪

Time Sharing and New Metric

• In a modern multiuser system different users

interact with the system simultaneously.

• A fast response from the system is an

essential requirement along with the

turnaround time.

• This introduces a new metric, the response

time. It is the time difference between the

arrival and first scheduling of a job.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 53✬

✫

✩

✪

Round-Robin Scheduling

• It is a FCFS policy with preemption.

• A time quantuma is allocated to a scheduled

process.

• There are two possibilities, either the CPU

burst of the scheduled process is greater

than the time quantum specified, or it is less

than that.
aTypical values are 10 to 100 milliseconds

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 54✬

✫

✩

✪

Round-Robin Scheduling

• If the CPU burst of the process exceeds the

time quantum, the timer set by the scheduler

before scheduling the process will reach its

terminal count and will interrupt the CPU.

• The control will be pass to the scheduler by

the interrupt service routine.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 55✬

✫

✩

✪

Round-Robin Scheduling

• The scheduler will put the running process at

the end of the ready queue and will schedule

the process from the head of the queue.

• If the CPU burst of the running process is

less than the time quantum i.e. the process

blocks itself either on some IO request or for

some other event to take place.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 56✬

✫

✩

✪

Round-Robin Scheduling

• The current process will go to wait state.

• The scheduler will pick up a new process

from the ready queue and the CPU will be

allocated to it.

• Once the IO of the suspended process is

completea, two things may happen

depending on the scheduling policy.
aOr the required event has taken place.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 57✬

✫

✩

✪

Round-Robin Scheduling

• The suspended process will be added to the

ready queue and the running process will

continuea.

• Or if the priorityb of the suspended process

is higher, the running process may be

preempted and the suspended process will be

restarted.
aThe priority of the suspended process will be lowered
bNot a pure round-robin.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 58✬

✫

✩

✪

Round-Robin Scheduling

• The main advantage of round-robin (RR)

scheduling is the response time.

• A ready process will not wait for long to get

the CPU.

• If the time quantum is q, then the wait time

is ≤ (n− 1)× q once it is ready, where n is

the number of ready processes in the

memory.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 59✬

✫

✩

✪

Round-Robin Scheduling

• A natural question is, what should be the

length of the time quantum.

• If the length is longer than most of the CPU

burst then it is as good as FCFS.

• If it is too short, good amount of time may

be wasted in context-switching.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 60✬

✫

✩

✪

Round-Robin Scheduling

• The cost of context-switch does not only

depend on cost of saving and restoring the

context by the OS.

• But it also depends on the cost of rebuilding

the content of cache, TLB, branch predictors

etc. of a process.

• The RR scheduling is a fair policy to ready

processes at the cost of turnaround time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 61✬

✫

✩

✪

Conflicting Requirements

• It is necessary to minimize the average

turnaround time (waiting time) of processes.

• It is also necessary to minimize the response

time for every interactive process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 62✬

✫

✩

✪

SJF (SRTF) versus RR

• We have already seen that the average

turnaround time is optimal when the OS

runs the shorter jobs first (SJF or SRTF).

• But in general the OS does not know the

running time of a job.

• The Round Robin (RR) algorithm is good

for response time but is bad for turnaround

time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 63✬

✫

✩

✪

Multilevel Queue Scheduling

• The ready processes may be divided into

different groups e.g. background or

foreground jobs; jobs of different priorities

e.g. system thread, interactive job; CPU

bound or IO bound jobs etc.

• Different types of jobs (if identified) can be

put in different ready queues.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 64✬

✫

✩

✪

Multilevel Queue Scheduling

• Different queues may have different

scheduling policies and priorities.

• There may be different queues for real-time,

IO-bound (interactive), CPU-bound jobs.

• But the problem is how to a priori classify

different types of jobs.

• Also there is a problem of starvation.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 65✬

✫

✩

✪

Multilevel Feedback Queue (MLFQ)

• A MLFQ scheduler tries to address the issue

on the basis of feedback from previous runs

of the process - feedback from historya.

• The process is put in an appropriate queue

for next scheduled run.
aSimilar to branch prediction, page or cache replacement algorithms.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 66✬

✫

✩

✪

Multilevel Feedback Queue (MLFQ)

• The queues have different priorities and time

quantum.

• OS can promote or demote a process in the

queues depending on its run-time behavior.

• It does not require any prior knowledge

about the process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 67✬

✫

✩

✪

Basic Assumptions

• Normally a queue of higher priority should

have shorter time quantum.

• The highest priority level is for interactive or

system processesa.

• There may be more than one ready processes

in a queue with same priority.

aWe are not considering real-time processes.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 68✬

✫

✩

✪

Basic Assumptions

• If the process P0 is at a higher priority queue

than a process P1, then P0 is scheduled first.

• If both P0 and P1 are in the same queue,

they may be scheduled in round robin (RR)

order from the head of the queue.

• At the lowest level of priority there are CPU

bound jobs and the policy may be FCFS

(batch processing).

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 69✬

✫

✩

✪

Basic Assumptions

• A computation intensive process has lower

priority but longer time quantum.

• A process starts at a queue of highest

priority with a small time quantum.

• But without a demotion policy of a high

priority process or a promotion of a low

priority process due to aging, there will be

starvation.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 70✬

✫

✩

✪

Demotion

• If a process scheduled from a particular

priority queue consumes its allotted time

slice, it is demoted to the next lower priority

queue with longer time quantum.

• Otherwise it comes back to the same queue

as a ready process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 71✬

✫

✩

✪

I/O versus Computation

• A long computation intensive process starts

from the highest priority queue, runs for the

short time slice, but as it is not complete,

gets demoted to a queue of lower priority

and longer time slice.

• An I/O intensive (interactive) process is

often blocked for I/O and cannot consume

the allotted CPU time slice. So it remains in

the high priority queue.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 72✬

✫

✩

✪

I/O versus Computation

• When the high priority job is ready after

I/O, the low priority computation job is

preempted.

• In this scheme a CPU bound process runs

when the interactive (I/O bound) job is

blocked.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 73✬

✫

✩

✪

Starvation

• But there may be starvation if there are

many interactive processes, and one of them

is often ready to run with high priority.

• A process may not be completely interactive

or CPU bound. It may be necessary to

promote a process from a lower priority

queue to a higher priority queue.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 74✬

✫

✩

✪

Defeat the Scheduler

• There is a possibility that a smart

programmer of a CPU bound process ‘fools’

the scheduler with a ‘fake’ I/O request

before the time slice is over and remains at

the highest priority level.

• This ‘attack’ needs to be avoided.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 75✬

✫

✩

✪

Refresh Priority

• After a period of time (epoch), the OS may

bring all processes back to the highest

priority level.

• It solves the problem of starvation.

• It also takes care of the situation where a

priority degraded process has become I/O

bound (interactive).

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 76✬

✫

✩

✪

Attack on Scheduler

• A process may have an allotted CPU time.

• The priority of a process will be degraded

once it exceeds the allotted CPU time.

• It requires more accounting per process by

the scheduler.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 77✬

✫

✩

✪

Parameters of MLFQ

• Number of queues in the hierarchy and their

scheduling policies. As an example, the

lowest priority queue (CPU bound job) may

adopt FCFS.

• Time quantum for each queue if the policy is

RR.

• The time period to refresh priority.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 78✬

✫

✩

✪

Proportional or Fair Share Scheduling

Instead of trying to optimize the turnaround
(waiting) time or the response time of a
process, these type of algorithms try to ensures
that every process gets a fair amount of the
CPU time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 79✬

✫

✩

✪

Lottery Scheduling

• Lottery scheduling is an example of a

probabilistic proportional share scheduling.

• Different processes are allocated a number of

tickets. This number is a measure of its

share of CPU time.

• At a regular interval a ticket is drawn at

random. The CPU is allocated to the

process that owns the ticket.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 80✬

✫

✩

✪

Lottery Scheduling

• A process with larger number of tickets has

a higher probability to be scheduled.

• Two processes P0, P1 together have 100

tickets. P0 has ticket numbers 0 through 29

and P1 has ticket numbers 30 through 99.

• The scheduler at the end of every time slice

picks a ticket at random and schedules the

winning process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 81✬

✫

✩

✪

Lottery Scheduling

Tickets can be used in many other useful ways.

• A user can allocate its share of tickets

among its own tasks.

• A process can temporarily transfer a share of

tickets to another process. As an example a

client process may expedite a server process

by transferring a part of its tickets.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 82✬

✫

✩

✪

Lottery Scheduling: Implementation

• A list of processes with the number of tickets

allotted to them is maintained.

• The scheduler generates a ticket number

using a random number generator. It also

maintains a counter initialized to 0.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 83✬

✫

✩

✪

Lottery Scheduling: Implementation

• The list of processes is traversed and the

corresponding ticket number is added to the

counter.

• The first process for which the counter value

exceeds the generated ticket number, is

selected for scheduling.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 84✬

✫

✩

✪

An example

• A list of processes: (P0, 30), (P1, 10), (P2, 60).

30− 39 and P2 has tickets 40− 99.

• The generated ticket number (t) is 37.

• Counter: 0 → 30 → 40 > t - the process P1

is scheduled.

• The list may be organized in the descending

order of ticket numbers for less traversal.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 85✬

✫

✩

✪

Lottery Scheduling: Note

• Fair proportion is not guaranteed. Can this

be made deterministic?

• How to allocate tickets to different processes?

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 86✬

✫

✩

✪

Linux CFS

• Linuxa uses a different approach for

fair-share scheduling that is efficient and

scalable. It is known as Completely Fair

Scheduler (CFS).

• It spends very small CPU time to take

scheduling decisionb.

aFrom Kernel 2.6.23. Linux used other scheduling for its earlier release.
bSome study shows that in a data-center scheduling takes about 5% of CPU

time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 87✬

✫

✩

✪

Virtual Run-Time

• The main aim of CFS is a fair allocation of

processor time to different processes.

• If a process has not yet consumed its share

of CPU time, it gets a higher priority.

• The CFS maintains a counter known as

virtual runtime to track its CPU usage.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 88✬

✫

✩

✪

Virtual Run-Time

• When a process runs, its virtual runtime is

increaseda.

• When all process have the same priority, the

virtual run-time increases at the same rate.

• If a process has lower virtual runtime, it has

not used its share of CPU time, and its

priority is higher to run next time.

aIt may be biased by priority.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 89✬

✫

✩

✪

CFS Window (epoch)

• The CFS decides a time window in which

each ready process should get a fair share of

CPU time.

• The window size and the number ready

processes decides the time slice of context

switching.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 90✬

✫

✩

✪

CFS Window (epoch)

• If the time window is small, every process

gets small but fair share of time. But context

switching too often has performance penalty.

• If the window is wider, each process may not

get its fair-share within it (it may be

suspended).

• CFS uses different control parameters to

decide the size of the time window.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 91✬

✫

✩

✪

CFS sched latency

• The first parameter of CFS is

sched latency (sched latency ns).

• It decides the context-switch time for each

ready process (sched latency / n) .

• But if the time slice is too small due to large

number of ready processes, the scheduler

uses sched min granularity for it.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 92✬

✫

✩

✪

Example

• sched latency = 45, n = 5,

sched min granularity = 6

The time slice is 9.

• sched latency = 45, n = 10,

sched min granularity = 6

The time slice is 6.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 93✬

✫

✩

✪

Priority and Nice Level

• An user or an administrator can change the

priority of a process.

• The priority is managed by changing the

Unix like nice values.

• The range of nice values are −20 to +19.

The default value is 0 (zero).

• Positive nice value imply lower priority and

negative nice value imply higher priority.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 94✬

✫

✩

✪

Changing Nice Values

• Only a superuser can change a nice value of

a process to negative.

• Use the command ps -Al to see nice values

of different running processes.

• $ sudo nice -n -10 vi ls7.tex will

change the nice value from 0 to −10.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 95✬

✫

✩

✪

Nice Level to Weight

• Nice values (priority) are mapped to a weight

through a table - prio to weight[40]

• These weights are used to modify the base

time slice and virtual runtime of a process.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 96✬

✫

✩

✪

Nice Level to Weight

static const int prio_to_weight[40] = {

/* -20 */ 88761, 71755, 56483, 46273, 36291,

/* -15 */ 29154, 23254, 18705, 14949, 11916,

/* -10 */ 9548, 7620, 6100, 4904, 3906,

/* -5 */ 3121, 2501, 1991, 1586, 1277,

/* 0 */ 1024, 820, 655, 526, 423,

/* 5 */ 335, 272, 215, 172, 137,

/* 10 */ 110, 87, 70, 56, 45,

/* 15 */ 36, 29, 23, 18, 15,

};

Note: The table preserves proportionality with
same difference in nice values.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 97✬

✫

✩

✪

Weight to Time Slice

Given n processes P0, · · · , Pk, · · ·Pn−1 with

weights w0, · · · , wk, · · · , wn−1 (obtained from

their nice values), the time slice tk of Pk can be

calculated by the following formula:

tk =
wk

∑n−1
i=0 wi

× sched latency.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 98✬

✫

✩

✪

An Example

• Let there be three processes P0, P1, P2 with

nice values −5, 0, 5 respectively. So their

weights are 3121, 1024, 335 respectively.

• Their time slices are approximately 0.69,

0.23, 0.08 fractions of sched latency. It is

of the form 3x, x, x/3.

• If the sched latency = 45, the time slices

are approximately 31, 10.5, 3.5.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 99✬

✫

✩

✪

Note

• The table prio to weight is so prepared that

same change in nice value gives the same

(approximately) proportional change in the

weight.

• Consider the change of nice: −3 → 1 → 5.

Corresponding changes in weight is

1991 → 820 → 335.

•
1991
820 ≈ 2.43 and 820

335 ≈ 2.45.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 100✬

✫

✩

✪

Computation of Virtual Runtime

• The Nice value also modifies the virtual

runtime of a process. It increases slowly with

actual runtime for a higher priority process.

• If the previous virtual runtime and the

current actual runtime of process Pk are vk

and rk respectively, then the updated virtual

runtime of Pk is vk +
w0

wk

× rk.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 101✬

✫

✩

✪

Time Slice and Virtual Runtime

• Consider two processes P0 and P1 are

running with nice value zero (0).

• Their virtual runtime are increasing at the

same rate with actual runtime.

• If the nice value of P1 is changed to 1, P1

should get 10% less of the CPU time i.e. it

should get 45% of the CPU time.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 102✬

✫

✩

✪

Time Slice and Virtual Runtime

• Time slice for P0 and P1 are

w(0)

w(0) + w(1)
=

1024

1024 + 820
≈ 0.55,

and

w(1)

w(0) + w(1)
=

820

1024 + 820
≈ 0.44

respectively.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 103✬

✫

✩

✪

Computation of Weight from Nice

• Let the new weight of P1 be w(1). So
w(1)

w(0)+w(1) = 0.45 i.e. w(1) = 9×w(0)
11 ≈ 820 if

w(0) = 1000 (actual value 1024).

• The factor is 0.820 or 0.820−1 for a change of

nice by one (1) or minus one (−1).

• So the the multiplier to compute the weight

table is 0.820nice = 1.22−nice.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 104✬

✫

✩

✪

Ready Queue Data Structure

• A scheduler needs to search the list of ready

processes to select the one to schedule. And

this is done at an interval of couple of

milliseconds.

• CFS uses a red-black tree (a balanced binary

tree) to store the ready/running processes.

• The processes are ordered according to the

virtual runtime.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 105✬

✫

✩

✪

Ready Queue Data Structure

• The scheduler picks up a process of lowest

virtual runtime.

• Insertion and deletion on a red-black tree

takes O(log n) time when there are n ready

processes.

• A blocked process (on I/O or other event) is

removed from the tree.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 106✬

✫

✩

✪

Virtual Runtime of a Blocked Process

• If the process P1 is blocked on I/O and P2

runs on CPU, there will be big difference in

the virtual runtime of these two processes.

• When P1 is ready, it will have much smaller

virtual runtime compared to P2. And it may

force P2 to starve.

• To avoid this, CFS resets the virtual runtime

of P1 to the smallest value present in the

read-black tree.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 107✬

✫

✩

✪

Classification of Processes in Linux

• Processes are classified in three broad

categories - IO-bound processes (interactive),

CPU-bound processes (batch) and real-time

processes.

• The CFS scheduler is for IO-bound and

CPU-bound conventional processes.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 108✬

✫

✩

✪

Scheduling Classes on Linux

• A conventional time-sharing process

(SCHED NORMAL).

• A class of batch jobs (SCHED BATCH).

• First-in, First-out (SCHED FIFO) real-time

process.

• Round Robin (SCHED RR) real-time process.

• Very low priority job (SCHED IDLE).

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 109✬

✫

✩

✪

Real-Time Process

• A soft real-time task should have a bounded

interrupt and dispatch latency.

• Standard Linux does not support hard

real-time process. It supports soft real-time

process.

• But we shall keep quiet about it. We also

have not discussed the multiprocessor

scheduling.

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 110✬

✫

✩

✪

Bibliography

1. Operating System Concepts by Abraham Silberschatz, Peter B

Galvin & Gerg Gagne, 9th ed., Wiley Pub., 2014, ISBN

978-81-265-5427-0.

2. Operating Systems: Three Easy Pieces by Remzi H.

Arpaci-Dusseau & Andre C. Arpaci-Dusseau Pub.

Arpaci-Dusseau Books, LLC, 2008-19.

3. Understanding the Linux Kernel by Daniel P Bovet & Marco

Cesati, 3rd ed., O’Reilly, ISBN 81-8404-083-0.

4. xv6 a simple, Unix-like Teaching Operating System by Russ

Cox, Frans Kaashoek & Robart Morris,

xv6-book@pdos.csail.mit.edu, Draft as of September 3,

2014.

5. https://notes.shichao.io/lkd/ch4/

Lect 7 Goutam Biswas



Operating System IIIT Kalyani 111✬

✫

✩

✪

6. A Complete Guide to Linux Process Scheduling by Nikita

Ishkov, M.Sc. Thesis, University of Tampere.

Lect 7 Goutam Biswas


